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The Generative Model Era

Model Input

Q: Roger has 5 tennis balls. He buys 2 more cans of
tennis balls. Each can has 3 tennis balls. How many
tennis balls does he have now?

A: Roger started with 5 balls. 2 cans of 3 tennis balls
each is 6 tennis balls. 5 + 6 = 11. The answer is 11.

Q: The cafeteria had 23 apples. If they used 20 to
make lunch and bought 6 more, how many apples

Co they have?

_— Model Output |
A

: The cafeteria had 23 apples originally. They used
20 to make lunch. So they had 23 - 20 = 3. They
bought 6 more apples, so they have 3 + 6 = 9. The

.
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“Generative Model” = Statistical Modeling + Neural Network Architecture



Why Algorithmic Modeling Research

¢ Traditional probabilistic ML focuses too much on structure of @ @

independence.
OO

¢ To build powerful statistical models, we need algorithmic

structure (architecture) that captures complex dependencies. @
e Current algorithmic model development mostly by trial and error @
Statistical Modeling: The Two Cultures O atols

Leo Breiman

Abstract. There are two cultures in the use of statistical modeling to
reach conclusions from data. One assumes that the data are generated
by a given stochastic data model. The other uses algorithmic models and
treats the data mechanism as unknown. The statistical community has 4
been committed to the almost exclusive use of data models. This commit-




Sequence Modeling Setup
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e Simple abstraction but very general
e Key challenge: A sequence model should capture potentially long range
dependencies.



Capturing Long Range Dependencies

RNNs: Keep a memory of the past Transformers: Brute force enumeration
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Attention is All You Need?

https://www.isattentionallyouneed.com/

Pros Is Attention All You Need?

e Numerous empirical successes
e Suited for massively parallel computation

Cons
e Quadratic complexity in length—limiting further scaling
e Needs ad-hoc fix for dense input: audio, image, video, long text

Current Status: Yes
Time Remaining: 1127d 9h 17m 6s
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Resurgence of RNNs
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6xk

Yk

S4: Explicitly Unroll Linear RNNs
— Convolutions

K eR' .= (CB,CAB,...,.CA 'B)

y=K=xu

Model Accuracy (%)
Attention:

Transformer (Trinh et al., 2018) 62.2
RNN:

LSTM (Hochreiter & Schmidhuber, 1997) 63.01
r-LSTM (Trinh et al., 2018) 722
UR-GRU (Gu et al., 2020b) 744
HiPPO-RNN (Gu et al., 2020a) 61.1
LipschitzRNN (Erichson et al., 2021) 64.2
State Space Models:

S4 (Gu et al., 2021) 91.80
S4D (Gu et al., 2022) 90.69
S5 (Smith et al., 2023) 90.10
Liquid-S4 (Hasani et al., 2022) 92.02



Resurgence of RNNs

Why convolutions are great:

e Avoid sequential computations, highly parallelizable
e Scale sub-quadratically with length

Weaknesses of state space-unrolled convolution (e.g., Gu et al., 22, Smith et al.
22, Lietal., 23):

e Kernel as long as input
e Requires complex parameterization schemes and FFT (or parallel scan)

e Specialized initialization such as HiPPO

9

Gu et al. (2021). Efficiently modeling long sequences with structured state spaces.
Li et al. (2022). What makes convolutional models great on long sequence modeling?
Smith et al. (2022). Simplified state space layers for sequence modeling.
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Wavelets and Multiresolution Analysis
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Wavelets and Multiresolution Analysis

p)=10<1<1)
t:0

f (1) = Z a; 1 &; (1),

keZ

Air = (/. (.bjk)

e Represent f by the vector {a;; } ;e for a sufficiently large j

e Problem: Each feature a; , may e too local to be representative y



Wavelets and Multiresolution Analysis
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Wavelets and Multiresolution Analysis

A multiresolution representation of f(#) can
lbe computed as:

J-1
FO0 = agdor®+ D Y by ()

keZ j=0 kez

where

a(n) 2 a;, = 2 a;,1(2n + khy(k),

b(n) 2 b, = Z a;,,(2n + kh, (k).

Discrete Wavelet Transform (DWT)
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A Wavelet Memory

e Memorize the history up to time ¢

¢ Forgetting: Drop fine details in the past

b’

i<y = 0

e Retrieve data from a past time s

)’(\:(S) = <W7 (36, b6:]_1)> where W = (¢(S)9 WO,O(S)a lljl,()(s)a lljl,l(s)’ )
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Multiresolution Convolutional Memory
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e The output (y,) at step n is generated from a multiresolution convolutional memory z,.
e Architectures with larger kernel sizes can be derived from Daubechies wavelets. 10




Fast Implementation as Causal Dilated Convolutions

Repeat

e Principled justification of WaveNet*-style causal dilated convolutions
* Differences (suggested improvements)
e Explicit memory construction

° for all timescales
e No nonlinearities across timescales 16

*van den Oord et al. (2016). WaveNet: A generative model for raw audio

Complexity: Fixed depth— O(N) At most— O(N log N)



O(1) Autoregressive Sampling

At each scale, maintain a queue of size (kernel size - 1) x dilation

17



Deep Learning with MultiresConv

Our layer is linear and parameter efficient, thus straightforward to
integrate into residual blocks and stack into deep architectures.

] Better than a 5x larger S4

Model Accuracy (%)
Attention:

Transformer (Trinh et al., 2018) 62.2
RNN:

LSTM (Hochreiter & Schmidhuber, 1997) 63.01
r-LSTM (Trinh et al., 2018) 72.2
UR-GRU (Gu et al., 2020b) 74.4
HiPPO-RNN (Gu et al., 2020a) 61.1
LipschitzZRNN (Erichson et al., 2021) 64.2
State Space Models:

L_S4 (Guetal., 2021) /.9M Params _ 91.80
S4D (Gu et al., 2022) 90.69
S5 (Smith et al., 2023) 90.10
Liquid-S4 (Hasani et al., 2022) 92.02
Convolution:

TrellisNet (Bai et al., 2019) 73.42
CKConv (Romero et al._2022b) 63.74
FlexConv (Romero et al., 2022a) 80.82
MULTIRESNET (Ours) 1.4M Params__ 93.15

Outperforming prior ConvNets by >10pps

Benchmark: Pixel-level Image Classification (Sequential CIFAR-10)
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Ablations on Cross-Layer Filter Sharing

Tied | Untied

SCIFAR | 93.15% = 92.16%

Long ListOps| 62.75% 61.85%
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More Results

Syntax Reasoning (Long ListOps) Autoregressive Generative Modeling (CIFAR-10)

First competitive small-kernel ConvNets* The best method without 2D bias
Model Accuracy (%) Model #params  Test bpd.
Attention: RNN + 2D bias:

Lgcal Attention (Tay et al., 2021) 15.82 PixeIRNN (Oord et al., 2016¢) 3.00
Linear Trans. (Katharopoulos et al., 2020) 16.13

Linformer (Wang et al., 2020) 16.13 ZD Convolution:

Sparse Transformer (Child et al., 2019) 17.07 PixelCNN (Oord et al., 2016¢) 3.14
Performer (Choromanski et al.) 18.01 Gated Pixel CNN (Oord et al., 2016b) 3.03
Transformer (Vaswani et al., 2017) 36.37 PixelCNN++ (Salimans et al., 2017) 53M 2.92
Sinkhorn Transformer (Tay et al., 2020) 33.67 D C. " 1 -

FNet (Lee-Thorp et al., 2022) 35.33 L Lonvo ufion + Attenfion:

Longformer (Beltagy et al., 2020) 35.63 PixelSNAIL (Chen et al., 2018) 46M 2.85
BigBird (Zaheer et al., 2020) 36.05 1D Attention:

Nystromformer (Xiong et al., 2021) 37.15 Lo

Luna-256 (Ma et al., 2021) 37.25 Jmage Trans. (Trinh et al., 2018) 2.90
Reformer (Kitaev et al., 2020) 37.27 . i

H-Transformer-1D (Zhu & Soricut, 2021) 49.53 Sparse Trans. (Child et al., 2019) SM 2.80
State Space Models: State-Space Models + U-Net structure:

S4 (Gu et al., 2022) 59.60 S4 (Gu et al., 2021) 2.85
]S)lfg ((g:ll%tta;_t’ 3216222(;22) 6507 562 Convolution (no 2D bias):

S5 (Smith et al., 2023) 62.15 MULTIRESNET (Ours) 38M 2.84
Liquid-S4 (Hasani et al., 2022) 62.75

Convolution:

CDIL (Cheng et al., 2023) 44.05

SGConv* (Li et al., 2022) 61.45

MULTIRESNET (Ours) 62.75

20

*State-space models (54, SGConvy, etc.) can be equivalently represented as convolutions with an input-length kernel. However, these models rely on sophisticated parameterization
& initialization techniques.



Implementation in 15 Lines of Code

def multires_layer(x, hO, hl, w, depth=None):
if depth is None:

depth = math.ceil (math.log2((x.shape[-1] - 1) / (self.hO.shape[-1] - 1) + 1))
y = 0.
a = x

dilation =1

for i in range(depth, 0, -1):
padding = dilation x (kernel_size - 1)
a = pad(a, (padding, 0), "constant", O0)
b convld(a, hl, dilation=dilation, groups=x.shape[l]
a = convld(a, hO, dilation=dilation, groups=x.shape[l]
y += w[:, 1:1+1] * b
dilation *= 2

y += wl[:, :1] * a

y += wl[:, -1:] % x

return y

)
)



Takeways

It’s possible to “derive” a performant neural network architecture.
A new sequence modeling layer grounded in wavelet theory.

Simple and parameter efficient
e |Implemented with small-kernel convolutions

e No specialised init or parameterization schemes, nor FFT

Strong performance: Remains SOTA on long sequence modeling benchmark

22



Future Work

Is the layer a universal sequence function approximator?
MultiresConv for 2D, 3D and general discrete topologies
Continuous MultiresConv

Large-scale MultiresConv generative models

23



Thanks

Paper: Sequence Modeling with Multiresolution Convolutional Memory

Code: github.com/thjashin/multires-conv

Contact: ishijiaxin@gmail.com

Collaborators:

Alex Wang Emily Fox
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http://github.com/thjashin/multires-conv
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