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A synthetic problem
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GP regression on the synthetic problem
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[l am being a bad Bayesian by plotting only the mean... sorry....]



Gaussian process regression

 Regression problem: Letf : & — R be some unknown function of interest. we
have access to data {Xx;, y;}._; where:

y; = f(x;) + €
 Two main assumptions:

fN GP(m, k) “Prior”

o) “Likelihood/
€~ N(O,G ) Observation
Model”



Gaussian process regression
f~ GP(m,k)

* A GP is a stochastic process often used as prior in Bayesian (non-
parametric) inference.

e It is fully determined by its mean function m : & — R and covariance
functonk : I X X - R

* The GP posterior can then be obtained in closed form as follows:
i =m+ KK + 0% )" '(y — m)
T =K(K+c%l) '6°l

ply,x) = N, pu, 2)



Why Gaussian processes?

1. A very flexible and interpretable model through the choice of prior

mean function m and covariance k function (e.g. smoothness,
periodicity, sparsity, etc...).

2. We get a posterior on f which quantifies epistemic uncertainty.

3. We can do exact conditioning through Gaussian conjugacy! We
therefore don’t need to do any approximation of the posterior!



Regression in the “real world”
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GP regression in the “real world”
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We assumed €; ~ N(0,6) but its wrong. ..



Our goal: robust GP regression
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Existing work

* There are two main categories:

1. Extended models: i.e. use more flexible likelihood model to ensure that
the outliers are well modelled. Examples include Student-t, mixtures,

Laplace, etc...
e ~ P # N(0,6°)

2. Outlier detection/removal: i.e. find the outliers, remove them, then fit a
standard GP model (with Gaussian observations) to the rest of the data.



Issues with existing work

* The main issue with all of the methods above is that they are very slow!

* This is because they all break Gaussian conjugacy and so we must resort
to approximate methods such as MCMC, Laplace or Variational Bayes.



Issues with existing work

* The main issue with all of the methods above is that they are very slow!

* This is because they all break Gaussian conjugacy and so we must resort
to approximate methods such as MCMC, Laplace or Variational Bayes.

GP m-GP
Synthetic ES5 (0.1) 2.2 (0.0) 3.0 (0.0) n=300d=1
Boston 1.9 (0.5) 30.7 (6.1) 16.7 (1.7) n=>506,d=13
Energy 3.8 (0.9) 34.0 (11) 33.8 (0.3) n=768,d=38
Yacht 16 (03 5.6 (0.7) 4.5 (0.4) n=2308,d=6

Table: Fitting time in second, including time for hyper parameter optimisation.



Goal of this project

 Robust Gaussian Process regression without the additional computational cost!
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Bayesian inference for
regression

Posterior Likelihood Prior

* |[n standard GP regression, we do:

ply,x) « p(y |1, x) X p(f]| x)

X = (xl,...,xn)T

£ = (fx), - f))T
Y= s )



Generalised Bayesian inference
for regression

Posterior Likelihood Prior

* |[n standard GP regression, we do:
pt]y.x) x p(y|t,x) X p(f]| x)

* We take a generalised Bayesian approach and do:

p (f|y,x) « exp (—nL,(f, y,x)) X p(f|x)

Generalised

Posterior

Loss function Prior



Standard vs Generalised
Bayesian inference
p |y, x) « exp (—nL,(f,y,x)) X p(f| x)

« Standard Bayes is recovered by taking 1
L{fy,Xx) =-— — log p(y | 1, x)

* This is optimal, but only when the model is well-specified; i.e. when
e ~ N(0,67)!

Key Question: \What should we do when this is not the case??



Generalised Bayesian inference
p (Ely.x) o exp (—nL,(f,y,x)) X p(f]x)

 We can choose the loss function to induce robustness to mild model
misspecification.

« Common choice is a loss based on the Beta divergence. But we have already
seen other examples (i.e. MMD) this week.

* In this talk, we will also choose the loss function for computational convenience!

Bissiri, P., Holmes, C., & Walker, S. (2016). A general framework for updating belief distributions. Journal of
the Royal Statistical Society Series B: Statistical Methodology, 78, 1103—1130.

Knoblauch, J., Jewson, J., & Damoulas, T. (2022). An optimization-centric view on Bayes’ rule: reviewing
and generalizing variational inference. Journal of Machine Learning Research, 23(132), 1-109.



Score-matching and generalisations

* The score-matching divergence is given by:
D(p|lg) := Ex.[ll(Vlogp — Vlog ¢)(X)||3]
- We consider a weighted generalisation basedonw : & — R:

D(p|1q) := Ex.,[llw(Viogp — Vlog g)(X)||3]

Hyviérinen, A. (2006). Estimation of non-normalized statistical models by score matching.
Journal of Machine Learning Research, 6, 695-708.

Barp, A., Briol, F.-X., Duncan, A. B., Girolami, M., & Mackey, L. (2019). Minimum Stein
discrepancy estimators. Neural Information Processing Systems, 12964—12976.



Score-matching and generalisations

» For regression setting, we need to extend this divergence (now
w: I XR - R):

D(p119) = Exey, [Eveqein [10v( Viog p = Viog (X, V)| |

« With integration by part and replacing q by our samples, we get that D is equal to
the following loss up to some additive constant which does not depend on f:

n

1 2 2
L€y, =— ' (0w ViogpP +2V,(6> Viog pp) ) 3, )
" i=1 |

Likelihood



RCGPs are conjugate!

« Suppose f ~ GP(m, k) and € ~ N(O,Gzln), then the GP and RCGP posteriors are:

Standard GP

pdly,x) = N, pu, )

i =m+ KK + 6% )" }(y — m)

Y =K(K+c%l) 6’

K = k(x;, x;) Identity matrix



RCGPs are conjugate!

« Suppose f ~ GP(m, k) and € ~ N(O,Gzln), then the GP and RCGP posteriors are:

Standard GP RCGP
p(ly,x) = N(f; u, %) p" £y, x) = N, u®, =5
i =m+ KK + 6% )" }(y — m) uf =m+ KK + 06%J,)"'(y — m,)

Y = KK +0*)" 6’ >k = K(K+ 6°J,) 6%,



RCGPs are conjugate!

« Suppose f ~ GP(m, k) and € ~ N(O,azln), then the GP and RCGP posteriors are:

Standard GP RCGP
pEly,x) = N(f; 4, Z) p" €|y, x) = N(f; u®, %)
i =m+ K(K + %1 )" }(y—m) uf=m+ KK + 06%J,) ' (y-m,)
> = KK+ %) 6%l >R = K(K + 6%J )" '6°J,

J,, = diag(w—2) m, = m + 6>V, log(w’)



Measuring outlier-robustness

* The posterior influence function measures the impact of a single
outlier on the posterior:

PIF(y5, D) = KL (p(f1 D), p(f| Dy,))

D = {xi’yi ?21 D;sl — (D\{xm’ym}) U {xm’yis”l}



RCGPs are provably outlier-robust

» Theorem (informal): Suppose w(x,y) = (1 + (y — m(x))zlcz)_%
for some ¢ > 0, then RCGPs are robust since:

sup PIFRcGP(YV» D) <
Ym

200 -~ GP
m= RCGP

PIF




Hyperparameter selection

* The standard approach for selecting hyper parameters is to do empirical Bayes
and maximise the marginal likelihood.

 This of course does not make sense when the likelihood is wrong!

e QOur alternative is to do leave-one-out cross-validation
62,0 = argmax { Z log p"(y;|X,y_;, 0, 02)}

 This can be done efficiently through clever linear algebra tricks and gradient-
based optimisation.



Performance when well-specified

GP RCGP m-GP
No Outliers

Synthetic | 0.08 (0.00) = 0.08 (0.00) = 0.09 (0.00) 0.33 (0.0)
Boston 0.20 (0.01) 0.20 (0.00) 0.20 (0.00)  0.28 (0.0)
Energy 0.02 (0.00) | 0.02 (0.00) = 0.03 (0.00) 0.61 (0.0)
Yacht 0.01 (0.00) | 0.02 (0.00) 0.02 (0.00)  0.33 (0.0)

GPs and RCGPs are comparable when the model is well-specified!

This is not true for other robust methods based on heavy-tailed likelihoods...



Performance when misspecified

GP RCGP m-GP
Focused Outliers
Synthetic  0.19 (0.00) 0.16 (0.00) 0.20 (0.00) 0.23 (0.0)
Boston 0.27 (0.12) 0.22 (0.03)  0.25 (0.01) 0.27 (0.0)
Energy 0.06 (0.06) 0.02 (0.00)  0.03 (0.00) 0.24 (0.0)
Yacht 0.28 (0.19) 0.10 (0.06) 0.24 (0.08)  0.24 (0.0)
Asymmetric Outliers
Synthetic  1.14 (0.00) 0.82 (0.00) 1.06 (0.00) 0.61 (0.0)
Boston 0.64 (0.04) 0.49 (0.01) 0.52 (0.00) 0.52 (0.0)
Energy 0.55 (0.05) 0.50 (0.16) 0.44 (0.04) 0.41 (0.0)
Yacht 0.54 (0.06) 0.36 (0.05) 0.41 (0.00)  0.40 (0.0)

RCGPs are robust!

0.0
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RCGPs are fast!

*P RCGP m-GP
Synthetic 1.5 (0.1) | 1.2 (0.0) 2.2 (0.0) 3.0 (0.0)
Boston 1905 £5.1 (0.9 30c(61) 167 (1L ¢
Energy 3.8 (0.9) | 4.6 (2.0) 34.0 (11) 33.8 (0.3)
Yacht 16l i s 45

RCGPs are much faster than other robust alternatives!



RCGPs are roughly as fast as GPs

*P RCGP m-GP
Synthetic 1.5 (0.1) 1.2 (0.0) | 2.2 (0.0) 3.0 (0.0)
Boston 19¢(0:5) 51 (0.9 F30c(61) 167 (1L ¢
Energy 3.8 (0.9) 4.6 (2.0) | 34.0 (11) 33.8 (0.3)
Yacht 1603 i lscon . 4509

Most of the difference between GP and RCGP comes down to
adaptive optimisers for hyper parameter optimisation



Robust Bayesian Optimisation

 |n Bayesian optimisation, the GP posterior is used to create an acquisition function.
Our RCGPs naturally lead to robust acquisition functions!
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Robust SVGPs

« Sparse Variational GPs (SVGPs) is an approximate GP method which reduces

significantly the cost of GPs from O(n?) to O(nm?) where m is small. Our approach
naturally leads to a robust version!

Fast!

5000 10000 15000
n observations

= == SVGP
== == RCSVGP

ey
~\’~—

5000 10000 15000
n observations

Robust!



Conclusion

« With careful choices of loss functions, Generalised Bayes can bring both
robustness and computational efficiency!

« RCGPs are an example in the case of GP regression where we get both
robustness and conjugacy, something no other competitor has managed!

« RCGPs can be developed for any case where standard GPs, and could hence
be used for multi-output GPs, multi-fidelity GPs, GPs with derivative or integral
information, etc...

 This type of approach is also useful way beyond the GP world....!
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Related work (online change
point detection)
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Altamirano, M., Briol, F.-X., & Knoblauch, J. (2023). Robust and scalable Bayesian online

changepoint detection. ICML, 642—-663.



Related work (Kalman filtering)
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Related work
(intractable likelihoods)

* Robust and conjugate generalised Bayes for continuous
doubly intractable models!

Matsubara, T., Knoblauch, J., Briol, F.-X., & Oates, C. J. (2022). Robust generalised Bayesian
inference for intractable likelihoods. JRSBB, 84(3), 997-1022.

» Robust (non-conjugate but fast!) generalised Bayes for discrete
doubly intractable models.

Matsubara, T., Knoblauch, J., Briol, F.-X., & Oates, C. J. (2023). Generalised Bayesian
inference for discrete intractable likelihood. JASA, to appear.

More soon.....




Any Questions?

d I'X].V > stat > arXiv:2311.00463
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