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A synthetic problem
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GP regression on the synthetic problem
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[I am being a bad Bayesian by plotting only the mean… sorry….]



Gaussian process regression

• Regression problem: Let  be some unknown function of interest. we 
have access to data  where: 

• Two main assumptions:

f : 𝒳 → ℝ
{xi, yi}n

i=1

yi = f(xi) + ϵi

ϵi ∼ N(0,σ2)

f ∼ GP(m, k) “Prior”

“Likelihood/
Observation 
Model”



• A GP is a stochastic process often used as prior in Bayesian (non-
parametric) inference. 

• It is fully determined by its mean function  and covariance 
function 

m : 𝒳 → ℝ
k : 𝒳 × 𝒳 → ℝ

Gaussian process regression

f ∼ GP(m, k)

p(f |y, x) = N(f; μ, Σ) μ = m + K(K + σ2In)−1(y − m)

Σ = K(K + σ2In)−1σ2In

• The GP posterior can then be obtained in closed form as follows:



Why Gaussian processes?

1. A very flexible and interpretable model through the choice of prior 
mean function  and covariance  function (e.g. smoothness, 
periodicity, sparsity, etc…). 

2. We get a posterior on f which quantifies epistemic uncertainty. 

3. We can do exact conditioning through Gaussian conjugacy! We 
therefore don’t need to do any approximation of the posterior!

m k



Regression in the “real world”
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ϵi ∼ N(0,σ2)



GP regression in the “real world”
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We assumed  but its wrong…ϵi ∼ N(0,σ2)



Our goal: robust GP regression
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Existing work



Existing work

• There are two main categories:

1. Extended models: i.e. use more flexible likelihood model to ensure that 
the outliers are well modelled. Examples include Student-t, mixtures, 
Laplace, etc… 

2. Outlier detection/removal: i.e. find the outliers, remove them, then fit a 
standard GP model (with Gaussian observations) to the rest of the data.

ϵ ∼ P ≠ N(0,σ2)



Issues with existing work

• The main issue with all of the methods above is that they are very slow! 
• This is because they all break Gaussian conjugacy and so we must resort 

to approximate methods such as MCMC, Laplace or Variational Bayes.



Issues with existing work

• The main issue with all of the methods above is that they are very slow! 
• This is because they all break Gaussian conjugacy and so we must resort 

to approximate methods such as MCMC, Laplace or Variational Bayes.

Table: Fitting time in second, including time for hyper parameter optimisation.

n = 300, d = 1
n = 506, d = 13
n = 768, d = 8
n = 308, d = 6



Goal of this project

• Robust Gaussian Process regression without the additional computational cost!



• In standard GP regression, we do:

Bayesian inference for 
regression

p(f |y, x) ∝ p(y | f, x) × p(f |x)

Posterior PriorLikelihood

f = ( f(x1), …, f(xn))⊤
x = (x1, …, xn)⊤

y = (y1, …, yn)⊤



• In standard GP regression, we do: 

• We take a generalised Bayesian approach and do:

Generalised Bayesian inference 
for regression

p(f |y, x) ∝ p(y | f, x) × p(f |x)

pL(f |y, x) ∝ exp (−nLn(f, y, x)) × p(f |x)

Posterior PriorLikelihood

PriorLoss function

Generalised 
Posterior



Standard vs Generalised 
Bayesian inference

pL(f |y, x) ∝ exp (−nLn(f, y, x)) × p(f |x)

• Standard Bayes is recovered by taking Ln(f, y, x) = −
1
n

log p(y | f, x)

• This is optimal, but only when the model is well-specified; i.e. when 
!ϵ ∼ N(0,σ2)

Key Question: What should we do when this is not the case??



Generalised Bayesian inference
pL(f |y, x) ∝ exp (−nLn(f, y, x)) × p(f |x)

Knoblauch, J., Jewson, J., & Damoulas, T. (2022). An optimization-centric view on Bayes’ rule: reviewing 
and generalizing variational inference. Journal of Machine Learning Research, 23(132), 1–109.

Bissiri, P., Holmes, C., & Walker, S. (2016). A general framework for updating belief distributions. Journal of 
the Royal Statistical Society Series B: Statistical Methodology, 78, 1103–1130.

• We can choose the loss function to induce robustness to mild model 
misspecification.

• In this talk, we will also choose the loss function for computational convenience!

• Common choice is a loss based on the Beta divergence. But we have already 
seen other examples (i.e. MMD) this week.



• The score-matching divergence is given by:

Score-matching and generalisations

Hyvärinen, A. (2006). Estimation of non-normalized statistical models by score matching. 
Journal of Machine Learning Research, 6, 695–708.

Barp, A., Briol, F.-X., Duncan, A. B., Girolami, M., & Mackey, L. (2019). Minimum Stein 
discrepancy estimators. Neural Information Processing Systems, 12964–12976.

D(p | |q) := 𝔼X∼q[∥(∇log p − ∇log q)(X)∥2
2]

• We consider a weighted generalisation based on :w : 𝒳 → ℝ

D(p | |q) := 𝔼X∼q[∥w(∇log p − ∇log q)(X)∥2
2]



• For regression setting, we need to extend this divergence (now 
):w : 𝒳 × ℝ → ℝ

Score-matching and generalisations

D(p | |q) := 𝔼X∼qx [𝔼Y∼q(⋅|X) [∥(w(∇log p − ∇log q))(X, Y )∥2
2]]

Lw
n (f, y, x) =

1
n

n

∑
i=1

((w∇log pf )2 + 2∇y(w2 ∇log pf ))(xi, yi)

• With integration by part and replacing q by our samples, we get that D is equal to 
the following loss up to some additive constant which does not depend on f:

Likelihood



• Suppose  and , then the GP and RCGP posteriors are:f ∼ GP(m, k) ϵ ∼ N(0,σ2In)

RCGPs are conjugate!

p(f |y, x) = N(f; μ, Σ)

μ = m + K(K + σ2In)−1(y − m)

Σ = K(K + σ2In)−1σ2In

Standard GP

Identity matrixKij = k(xi, xj)



• Suppose  and , then the GP and RCGP posteriors are:f ∼ GP(m, k) ϵ ∼ N(0,σ2In)

RCGPs are conjugate!

p(f |y, x) = N(f; μ, Σ)

μ = m + K(K + σ2In)−1(y − m)

Σ = K(K + σ2In)−1σ2In

Standard GP

pw(f |y, x) = N(f; μR, ΣR)

μR = m + K(K + σ2Jw)−1(y − mw)

ΣR = K(K + σ2Jw)−1σ2Jw

RCGP



• Suppose  and , then the GP and RCGP posteriors are:f ∼ GP(m, k) ϵ ∼ N(0,σ2In)

RCGPs are conjugate!

p(f |y, x) = N(f; μ, Σ)

μ = m + K(K + σ2In)−1(y−m)

Σ = K(K + σ2In)−1σ2In

Standard GP

pw(f |y, x) = N(f; μR, ΣR)

μR = m + K(K + σ2Jw)−1(y−mw)

ΣR = K(K + σ2Jw)−1σ2Jw

RCGP

Jw = diag(w−2) mw = m + σ2 ∇ylog(w2)



Measuring outlier-robustness

PIF(yc
m, D) = KL (p( f |D), p( f |Dc

m))

Dc
m = (D∖{xm, ym}) ∪ {xm, yc

m}D = {xi, yi}n
i=1

• The posterior influence function measures the impact of a single 
outlier on the posterior:



RCGPs are provably outlier-robust

sup
yc

m

PIFRCGP(yc
m, D) < ∞

• Theorem (informal): Suppose  
for some , then RCGPs are robust since:

w(x, y) = (1 + (y − m(x))2/c2)− 1
2

c > 0
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Hyperparameter selection
• The standard approach for selecting hyper parameters is to do empirical Bayes 

and maximise the marginal likelihood.

• This of course does not make sense when the likelihood is wrong!

̂σ2, ̂θ = arg max
σ2,θ {

n

∑
i=1

log pw(yi |x, y−i, θ, σ2)},

• Our alternative is to do leave-one-out cross-validation

• This can be done efficiently through clever linear algebra tricks and gradient-
based optimisation.



Performance when well-specified

GPs and RCGPs are comparable when the model is well-specified!

This is not true for other robust methods based on heavy-tailed likelihoods…



Performance when misspecified

RCGPs are robust!

Heavy-tailed likelihoods are not suitable for this type of outliers…



RCGPs are fast!

RCGPs are much faster than other robust alternatives!



RCGPs are roughly as fast as GPs

Most of the difference between GP and RCGP comes down to 
adaptive optimisers for hyper parameter optimisation



Robust Bayesian Optimisation
• In Bayesian optimisation, the GP posterior is used to create an acquisition function. 

Our RCGPs naturally lead to robust acquisition functions!

Robust!

Fast!



Robust SVGPs
• Sparse Variational GPs (SVGPs) is an approximate GP method which reduces 

significantly the cost of GPs from  to  where  is small. Our approach 
naturally leads to a robust version!

O(n3) O(nm2) m

Fast!

Robust!



Conclusion
• With careful choices of loss functions, Generalised Bayes can bring both 

robustness and computational efficiency! 

• RCGPs are an example in the case of GP regression where we get both 
robustness and conjugacy, something no other competitor has managed! 

• RCGPs can be developed for any case where standard GPs, and could hence 
be used for multi-output GPs, multi-fidelity GPs, GPs with derivative or integral 
information, etc… 

• This type of approach is also useful way beyond the GP world….!



Related work (online change 
point detection)

Altamirano, M., Briol, F.-X., & Knoblauch, J. (2023). Robust and scalable Bayesian online 
changepoint detection. ICML, 642–663.



Related work (Kalman filtering)



Related work 
(intractable likelihoods)

• Robust and conjugate generalised Bayes for continuous 
doubly intractable models! 

• Robust (non-conjugate but fast!) generalised Bayes for discrete 
doubly intractable models.

Matsubara, T., Knoblauch, J., Briol, F.-X., & Oates, C. J. (2022). Robust generalised Bayesian 
inference for intractable likelihoods. JRSBB, 84(3), 997–1022.

Matsubara, T., Knoblauch, J., Briol, F.-X., & Oates, C. J. (2023). Generalised Bayesian 
inference for discrete intractable likelihood. JASA, to appear.

More soon…..



Any Questions?


