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Malaria

= Malaria is a life-threatening disease spread to
humans by some types of mosquitoes. It is mostly
found in tropical countries.

= The infection is caused by a parasite and does not
spread from person to person but requires a vector
(the mosquito)

= Symptoms can be mild or life-threatening. Mild
symptoms are fever, chills and headache. Severe

symptoms include fatigue, confusion, seizures, and OOV G0 VED
difficulty breathing. O 0 -
= Infants, children under 5 years, pregnant women, ‘ij ﬁ',:. O W @
travellers and people with HIV or AIDS are at higher \ ¢ }\ C
risk of severe infection. " O &
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Context (near elimination settings)

= According to WHO'’s
latest World malaria report, When will the world be free of malaria?  —
there were an estimated 241 |
million malaria
cases and 627 000 malaria
deaths worldwide in 2020.

= Malaria elimination is defined ’ )r* y ‘.“‘f i
as the interruption of local (o o ¢ W

transmission of a specified
malaria parasite species in a
defined geographical area as
a result of deliberate
activities.
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Research question
From a list of all cases of malaria in a country

Want to determine which cases were acquired within the country
(person to person transmission) versus those who acquired the
disease elsewhere and brought it back with them (imported malaria
cases).

Traditionally done using travel history
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Hawkes Process

Self exciting point process
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Hawkes Processes
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Case reproduction number

Branching factor

n* = joog(T) dt

Analogous to the case reproduction number

R @
6
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The type of data (order 1000 people)

Date of symptoms | Date of test Date of
onset hospitalisation

12/7/23 15/7/23 16/7/23 M
02 16/7/23 17/7/23 17/7/23 F
03 12/7/23 19/7/23 F
04 20/7/23 21/7/23 M
05 19/7/23 20/7/23 M
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Inference methods

= Maximum likelihood estimation
= Expectation - Maximisation
= Bayesian Inference

bristol.ac.uk



Maximum Likelihood Estimation

Use an optimizer to minimize the negative log-likelihood

f = argmin, e (—log L(0)),

bristol.ac.uk o |
https://link.springer.com/article/10.1007/s11009-011-9272-5



Estimate the background term and kernel

Yy
Yy

Fixed 12.5 days
delay
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How to you account for uncertainty?

A

ALGORITHM 6. Using the parameter values ©
from a previously fitted model, and starting with i = 1:

1. Using a simulation algorithm from Section 3.3, sim-

ulate a new dataset in the same spatio-temporal re- Fitted value [95% confidence intervall
gton. ) o «Q 0.0308 [0.0126, 0.0676]
2. Fit the same model (tl()) this new data, obtaining new 5 0.0789 [0.0248, 0.1681]
, banmetervalues 91 A 2.1369 [-7.1932, 2.854]
. Repeat steps 1 and 2 withi =i + 1, up to some pre-
specified number of simulations B (e.g., 1000). B -0.0018 [-0.1689, -0.0014]
(Alternately, the algorithm can be adaptive, by M -0.5836 [-0.8269, 10.2468]
checking the confidence intervals after every b steps N 0.3262 [-1.0208, 9.8495]

and stopping when they seem to have converged.)

4. Calculate bootstrap 95% confidence intervals for
each parameter by using the 2.5% and 97.5% quan-
tiles of the estimated ©©.

https://projecteuclid.org/journals/statistical-science/volume-33/issue-3/A-
bristol.ac.uk Review-of-Self-Exciting-Spatio-Temporal-Point-Processes-
and/10.1214/17-STS629.full



Notation switch:

Expectation - Maximisation “=5

= Expectation

L wk‘5k’€—5k(ti—tj)
Yk Sl Wk ghe— ok (titn)
Pk = ©

Tk 4 SNl ok gke—dt (ti—tn)
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= ANt)=pu+ Z wde 01—t

t>t;

= Maximisation

1 N
,uk+1 — B Pk
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Problem with temporal only data

5

infector
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A=p+ Yise, ae~ 0=t

= 0.5+ Z 1e—2(t=t)
mc-stan.org

t>t;

Bayesian Inference

real log_likelihood(real mu, real alpha, real delta, vector events_list, int N, real max_T){
// first term

vector[N] differences_from_max_T = max_T - events_list;
vector[N] summands = exp(-delta * differences_from_max_T) - 1;

vector[N] within_max_T_Mask = non_negative_mask(differences_from_max_T);
summands = summands .* within_max_T_Mask;

real first = mu * max_T - (alpha / delta) * sum(summands);

// second term

matrix[N, N] differences_mat = self_differences(events_list);
matrix[N, N] inner_sum_mat = exp(-delta * differences_mat);
inner_sum_mat = zero_above_diagonal(inner_sum_mat);

vector[N] term_inside_log = mu + alpha * rowsum(inner_sum_mat);
vector[N] second_sum_terms = log(term_inside_log); mu 9
real second = sum(second_sum_terms);

return -first + second;

1
¥
data {

int<lower=0> N;

vector[N] events_list;

real max_T; alph'd -
¥

parameters {
real mu;
real <lower=0> alpha;
real <lower=0> delta;

}

model {
mu ~ normalC 1, 1)

delta 1

alpha ~ normal( 1 , 1
1

J;
delta ~ normal( 2 , 1 ); I

target += log_likelihood(mu, alpha, delta, events_list, N, max_T);



Simulate to see if tease apart contributions
from importations or not

One method is thinning.

Supplementary Algorithm 1: Ogata’s thinning algorithm adapted for Hawkes Pro-
cesses
Set current time t = 0 and event counter i = 0;

while t < T,,,. do
(a) Calculate the upper bound of the Hawkes intensity A\* = A(¢). If an event occurs

at time t it is accounted for;

Inu .

(b) Sample inter-arrival time by drawing u ~ U(0, 1) and letting 7 = —5*;
(c) Update current time: ¢ =t + 7;
(d) Draw s ~ U(0,1).;
if If s <29 then
‘ Accept the current sample and let ¢; = ¢ and i =i + 1;
else
‘ Reject the sample;
end

end
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It’s hard for this malaria set up
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Can use cluster-based simulation instead

Algorithm 2 Simulation by Cluster Structure
Inputs: T},4.,0
Simulate t1,...,tx, the times of exogenous events
Go = {tl,...,tk}
Ny = card(Gy)
(=0
while G, # () do
for : =1 to Ny do
Simulate C;, the number of offspring of event @
Simulate O1, ..., Oc¢;,, the inter-arrival times of the offspring events
end for
{=0+1
Ge={Ge1 + U, 01,...,00,} <y,
Ny = card(Gy)
: end while
. return Uﬁf&” Gy

e e e
AR~ S vl =
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Malaria Cases in Yunnan Province, China

Daily cases
Daily importations

500
Time (days) Time (days)

500

: https://journals.plos.org/ploscompbiol/article?id=10.1371/j
bristol.ac.uk ournal.pcbi. 1008830



Missing data
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Bhutan
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Vivax malaria relapses

RELAPSES IN BENIGN TERTIAN MALARIA

WEEKS AFTER RICOVERY MOM PRIMARY ATTACK -
P A4S0 TRIYONROUESSTEANRIDBRMBETAININBNENTUDIQUA NS il
’ i H H

Al .8 c D . E i
P.vivax
(Madagascar)
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RECOVERY FROM PRMARY ATTACK
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https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3228849/






March 2020

= Didn’t know too much about this novel pathogen

= Had multiple cases each day
= \Were not observing the whole line list

bristol.ac.uk



Renewal based models for outbreak
response

t

ElZ(t)] = f(t)= pu(t) + Ro f(t —7)g(r)dr

~~~ 4 J7=0
erogenous ~~
/ / endogenous \\

Expectation of number of
infections

Serial interval
Basic reproduction distribution (infection
number profile)

Imported infections
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Embedded in a hierarchical framework
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Estimating R,
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1) A spatial-temporal model
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1) A spatial-temporal model
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1) A spatio-temporal renewal model

t—1 t—1 t—1
. . remain . enter . leave .
Zt,m - Rt,m"im § Z7',7ngt—7' + § Rt,mﬁnm Lrngt—r + § Rt,nﬁmn § ZT,ngt—T
T n#£m T n#*m T
N ~~ 4 \ 4 - 7
. . . . . Vv Vv
within region transmission transmission from people commuting transmission from people commuting
in and bringing infections with them out and returning with infection
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1) Problems

- Have discrete spatial regions where health data is recorded so
can’'t do anything continuous in space

- Need to know Rt for each region to calculate the number of
infections (hard to parallelise)

- Gets expensive when have multiple regions because infections
from all regions can infect each other region

« Stan is slow
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2) Recreating transmission trees

bristol.ac.uk



2) Problem with temporal only Hawkes

5
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2) Adding a spatio-temporal component

,u(t) Eg(t—ti) h(x — x;)

t>t;

A(t)

bristol.ac.uk



2) Is this enough?

= How to encode spatial regions in this continuous framework?
= \Would that be enough to recreate the chains?
= Adding extra genetic information?
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University of
L BRISTOL

Any questions / thoughts /
ideas?

Thanks to Aisling Stokes and Ethan
Honey for some slides / code




