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Malaria 
§ Malaria is a life-threatening disease spread to 

humans by some types of mosquitoes. It is mostly 
found in tropical countries. 

§ The infection is caused by a parasite and does not 
spread from person to person but requires a vector 
(the mosquito)

§ Symptoms can be mild or life-threatening. Mild 
symptoms are fever, chills and headache. Severe 
symptoms include fatigue, confusion, seizures, and 
difficulty breathing.

§ Infants, children under 5 years, pregnant women, 
travellers and people with HIV or AIDS are at higher 
risk of severe infection.



Context (near elimination settings)
§ According to WHO’s 

latest World malaria report, 
there were an estimated 241 
million malaria 
cases and 627 000 malaria 
deaths worldwide in 2020. 

§ Malaria elimination is defined 
as the interruption of local 
transmission of a specified 
malaria parasite species in a 
defined geographical area as 
a result of deliberate 
activities.



Research question

From a list of all cases of malaria in a country

Want to determine which cases were acquired within the country 
(person to person transmission) versus those who acquired the 
disease elsewhere and brought it back with them (imported malaria 
cases).

Traditionally done using travel history



Hawkes Process

Self exciting point process



Hawkes Processes

Intensity of 
infection =

Background 
contribution to 

intensity.

e.g imported malaria 
cases or spill-over 

+
Contribution to 
intensity from 

person to person 

e.g. direct 
transmission 
within country 
transmission



The kernel
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Background term

𝜇 = 𝐴 + 𝐵𝑡 + 𝐶 cos
2𝜋𝑡
𝑝 + 𝐷 sin

2𝜋𝑡
𝑝



Case reproduction number

Branching factor

Analogous to the case reproduction number

𝑛∗ = #
$

%
𝑔(𝜏)𝑑𝜏

𝑅 =
𝛼
𝛿



The type of data (order 1000 people)

ID Date of symptoms 
onset

Date of test Date of 
hospitalisation

Sex

01 12/7/23 15/7/23 16/7/23 M

02 16/7/23 17/7/23 17/7/23 F

03 12/7/23 19/7/23 F

04 20/7/23 21/7/23 M

05 19/7/23 20/7/23 M



Inference methods

§ Maximum likelihood estimation
§ Expectation - Maximisation
§ Bayesian Inference



Maximum Likelihood Estimation

Substituting (F) into (A) enables us to solve for the conditional probability density function
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After rearranging (G),
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The likelihood function of the Hawkes Process, with parameters ✓ is the joint density function of
all the points in the history of the outbreak and can therefore be factorised into all the conditional
densities of each points given all points before it. This yields

L(✓) = f ?(t1)...f
?(tn)(1� F ?(T )), (I)

where (1�F ?(T )) is the last term because the unobserved point tn+1 appears after the end of the
observation interval. Using equation (A), the likelihood function can be written as
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Expanding (J) using the equation for the conditional probability density function from (H) gives
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Simplifying (K) yields
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By combining the exponentials in (L) and assuming t0 = 0, the likelihood function is
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One method for selecting parameters is to maximise our likelihood function over our parameter
space ⇥, which is defined as

✓̂ = argmax✓2⇥
�
L(✓)

�
. (N)

However, it is common to minimise the negative log-likelihood function instead of maximising it
because it is a less computationally expensive calculation and is more accurate. We therefore
define our problem as

✓̂ = argmin✓2⇥
�
� logL(✓)

�
, (O)

where

logL(✓) =
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Use an optimizer to minimize the negative log-likelihood

https://link.springer.com/article/10.1007/s11009-011-9272-5



Estimate the background term and kernel

Fixed 12.5 days 
delay



How to you account for uncertainty?
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not accounted for. Similarly, if events occurred just
outside the spatial region X, they can have offspring
inside X, which will not be simulated. This can be
avoided by simulating over a larger space–time win-
dow and then only selecting simulated events inside X
and [0, T ). Møller and Rasmussen (2005) developed a
perfect simulation algorithm for temporal Hawkes pro-
cesses which avoids edge effects, but its extension to
spatio-temporal processes remains to be developed.

3.4 Asymptotic Normality and Inference

Ogata (1978) demonstrated asymptotic normality of
maximum likelihood parameter estimates for tempo-
ral point processes, and showed the covariance con-
verges to the inverse of the expected Fisher infor-
mation matrix, suggesting an estimator based on the
Hessian of the log-likelihood at the maximum likeli-
hood estimate. This estimator has been frequently used
for spatio-temporal models in seismology; however,
Wang, Schoenberg and Jackson (2010), comparing it
with sampling distributions found by repeated simula-
tion, found that standard errors based on the Hessian
can be heavily biased for small to moderate observation
period lengths, suggesting the finite-sample behavior is
poor.

Rathbun (1996) later demonstrated that for spatio-
temporal point processes, maximum likelihood esti-
mates of model parameters are consistent and asymp-
totically normal as the observation time T → ∞, un-
der regularity conditions on the form of the conditional
intensity function λ(s, t). An estimator for the asymp-
totic covariance of the estimated parameters is

(14) "̂ =
(

n∑

i=1

#(si, ti)

λ(si, ti)

)−1

,

where #(si, ti) is a matrix-valued function whose en-
tries are

#ij (s, t) = λ̇i (s, t)λ̇j (s, t)

λ(s, t)

and λ̇i (s, t) denotes the partial derivative of λ(s, t) with
respect to the ith parameter. From "̂ we can derive
Wald tests of parameters of interest, and by inverting
the tests we can obtain confidence intervals for any pa-
rameter.

Rather than relying on asymptotic normality, an-
other approach is the parametric bootstrap, which has
been used for temporal point process models in neuro-
science (Sarma et al., 2011). The parametric bootstrap,
though computationally intensive, is conceptually sim-
ple:

ALGORITHM 6. Using the parameter values $̂
from a previously fitted model, and starting with i = 1:

1. Using a simulation algorithm from Section 3.3, sim-
ulate a new dataset in the same spatio-temporal re-
gion.

2. Fit the same model to this new data, obtaining new
parameter values $̂(i).

3. Repeat steps 1 and 2 with i = i + 1, up to some pre-
specified number of simulations B (e.g., 1000).

(Alternately, the algorithm can be adaptive, by
checking the confidence intervals after every b steps
and stopping when they seem to have converged.)

4. Calculate bootstrap 95% confidence intervals for
each parameter by using the 2.5% and 97.5% quan-
tiles of the estimated $̂(i).

This is straightforward to implement, relies on min-
imal assumptions, and is asymptotically consistent in
some circumstances. However, just as asymptotically
normal standard errors may be biased for finite sample
sizes, the bootstrap has no performance guarantees on
small samples. Wang, Schoenberg and Jackson (2010)
tested neither the parametric bootstrap nor the estima-
tor of Rathbun (1996) in their simulations, so no direct
comparison is possible here, and those intending to use
the bootstrap should test its performance in simulation.

It is sometimes desirable to estimate only a subset
of the parameters in a model, either because full es-
timation is intractable or because some covariates are
unknown. Dropping terms from the conditional inten-
sity results in a partial likelihood, and parameter es-
timates obtained by maximizing the partial likelihood
may differ from those obtained from the complete like-
lihood. Schoenberg (2016) explored the circumstances
under which the parameter estimates are not substan-
tially different, finding that partial likelihood estimates
are identical under assumptions about the separability
of the omitted parameters, and are still consistent in
more general additive models under assumptions that
the omitted parameters have relatively small effects on
the intensity. In either case, the maximum partial like-
lihood estimates still have the asymptotic normality
properties discussed above.

3.5 Bayesian Approaches

Rasmussen (2013) introduced two methods for
Bayesian estimation for self-exciting temporal point
processes: direct Markov Chain Monte Carlo (MCMC)
on the likelihood, using Metropolis updates within a
Gibbs sampler, and a method based on the cluster pro-
cess structure of the process. Loeffler and Flaxman

Fitted value [95% confidence interval]

↵ 0.0308 [0.0126, 0.0676]
� 0.0789 [0.0248, 0.1681]
A 2.1369 [-7.1932, 2.8548]
B -0.0018 [-0.1689, -0.0014]
M -0.5836 [-0.8269, 10.2468]
N 0.3262 [-1.0208, 9.8495]

1

https://projecteuclid.org/journals/statistical-science/volume-33/issue-3/A-
Review-of-Self-Exciting-Spatio-Temporal-Point-Processes-
and/10.1214/17-STS629.full



Expectation - Maximisation

§ Expectation § Maximisation

Chapter 2. Background to Hawkes Processes 2.4. Estimation Procedures

Mohler (2011). The method will be extended further to a Hawkes process with a Rayleigh kernel
applicable for infectious diseases in Section 4.2.3.

Exponential Kernel and Constant Background

The Hawkes process used in this algorithm has the following conditional intensity:

�(t) = µ+
X

t>ti

↵e��(t�ti).

To avoid the necessity of optimisation methods the following reparameterization is taken:
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X
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The algorithm then involves specifying initial parameter estimates and iterating the E and M steps
until convergence. We can define the kth E step of the EM algorithm as follows:

P k
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where Pij is the probability that point i has been triggered by point j and therefore Pii is the probabil-
ity that point i arises due to the background intensity or in other words has no known causal infection.

The corresponding M step is then defined as such:
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P
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where N is the total number of points and Tmax the maximum time point as before.

2.4.3 Bayesian Inference with Missing Data

A final method of estimation of a Hawkes process’ parameters which would also allow for estimation of
the entire branching structure is through Bayesian inference. The method is described by Rasmussen
(2013) but was not implemented in this thesis due to time constraints. It is further discussed in
Section 6.3.
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Problem with temporal only data
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Bayesian Inference
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Simulate to see if tease apart contributions 
from importations or not
One method is thinning.

and n is the number of events at time T [3].
Traditionally, a monotonically decreasing exponential kernel of the form

�(t� ti) = ↵e��⇤(t�ti) (Q)

is used in the Hawkes process literature [4, 5, 6] where � > ↵ > 0. Here ↵ controls the magnitude
of the kernel, � controls the speed of the decrease and i is an index. This kernel is traditionally
chosen because in the most common use cases such as earthquakes and social media, events
are most likely to trigger secondary events immediately after the first event happens. We discuss
alternative kernels in the Methods Section that may be better suited to epidemiological modelling,
where for example latent periods are necessary to capturing disease specific behaviour.

B Simulating Hawkes Processes

Simulation is used to learn more about our Hawkes Process so that we can better understand their
behaviour and can validate our models to see how well they fit the underlying data. We can also
use them to infer future behaviour. Ogata’s thinning algorithm [7] is a method for simulating non-
homogeneous Poisson processes for any kernel function �(t); we describe this algorithm adapted
for Hawkes Processes in Algorithm 1.

Supplementary Algorithm 1: Ogata’s thinning algorithm adapted for Hawkes Pro-
cesses
Set current time t = 0 and event counter i = 0;
while t  Tmax do

(a) Calculate the upper bound of the Hawkes intensity �? = �(t+). If an event occurs
at time t it is accounted for;
(b) Sample inter-arrival time by drawing u ⇠ U(0, 1) and letting ⌧ = �

lnu
� ;

(c) Update current time: t = t+ ⌧ ;
(d) Draw s ⇠ U(0, 1).;

if If s  �(t)
�? then

Accept the current sample and let ti = t and i = i+ 1;
else

Reject the sample;
end

end

While the current time is less than the maximum time considered in the simulation, we calculate
the maximum value of the intensity, �?, for the events that have happened. For any bounded
intensity �(t), there is constant �? such that �(t)  �? in a given time interval. The upper bound
of intensity is immediately after the event has occurred for a Hawkes Process with a monotonically
decreasing kernel function, like the exponential function in Eq Q, and no or a constant µ (exogenous
term). However, this is not always so simple for other kernel functions and is addressed in the
Methods Section.

3



It’s hard for this malaria set up



Can use cluster-based simulation instead

Chapter 2. Background to Hawkes Processes 2.3. Simulation Methods

- the maximum possible time point and ✓ - the process parameters.

Algorithm 1 Simulation by Modified Thinning

1: Inputs: Tmax, ✓
2: Set time t = 0 and number of events i = 0
3: while t  Tmax do
4: Calculate the upper bound on the intensity - �+ (such that �(t)  �+

8 t 2 [0, Tmax])

5: Sample u ⇠ Uniform(0,1) and let ⌧ = �log(u)
�+

6: Update t = t+ ⌧
7: Draw s ⇠ Uniform(0,1)

8: if s  �(t)
�+

9: Accept the sample and let ti = t and i = i+ 1
10: else
11: Reject the sample
12: end while
13: return

S
ti

This method is very e↵ective for simulating Hawkes processes with monotonically decreasing kernels,
specifically the exponential kernel as used in Ogata’s seminal paper, and straightforward exogenous
terms. In these cases the maximum intensity, �+, between two times is the intensity at the start of
the time period. When more complex background intensities or non-monotonically decreasing kernels
are used the act of finding the maximum intensity becomes far more di�cult and less computationally
e�cient. The R code pertaining to this method of simulation was provided by Unwin (2021).

2.3.2 Cluster Based Algorithm

An alternative method of simulation takes advantage of the cluster structure of Hawkes processes. It
was formulated for use in seismology (Zhuang et al., 2004) but has not been commonly applied to
epidemiological Hawkes processes of the form we consider. This method of simulation is central to
our end goal of identifying cases with no known causal infection. Cluster based simulation leverages
the representation of the process as a Poisson cluster process as given in Definition 2.2.1. It involves
simulating events from the background intensity throughout the entire time period [0, Tmax]. This is
generation zero, G0. The algorithm then simulates the number of o↵spring each event of G0 produces
and the corresponding inter-arrival time of these o↵spring events. The time of the new events is
equal to this inter-arrival time added to the time of their parent event provided this time is within
the period. The procedure continues until there are no events in a generation. The full algorithm is
described in Algorithm 2. Methods of simulating from background intensities and triggering functions
specific to the Hawkes processes of interest are discussed in Section 4.1.

Algorithm 2 Simulation by Cluster Structure

1: Inputs: Tmax, ✓
2: Simulate t1, . . . , tk, the times of exogenous events
3: G0 = {t1, . . . , tk}
4: N0 = card(G0)
5: ` = 0
6: while G` 6= ; do
7: for i = 1 to N` do
8: Simulate Ci, the number of o↵spring of event i
9: Simulate O1, . . . , OCi , the inter-arrival times of the o↵spring events

10: end for
11: ` = `+ 1
12: G` = {G`�1 +

SN`

i=1 O1, . . . , OCi}<TMax

13: N` = card(G`)
14: end while
15: return

S`Max

`=0 G`

The primary advantage of this method over modified thinning is that one knows directly who infected
whom. This can be produced as an additional output of the algorithm and subsequently be used to
test expectation-maximisation estimates of probabilities of someone infecting someone else.

8



Malaria Cases in Yunnan Province, China

https://journals.plos.org/ploscompbiol/article?id=10.1371/j
ournal.pcbi.1008830



Missing data
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Vivax malaria relapses

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3228849/



This led to a COVID-19 
renewal model



March 2020

§ Didn’t know too much about this novel pathogen
§ Had multiple cases each day
§ Were not observing the whole line list



Renewal based models for outbreak 
response

Expectation of number of 
infections

Figure 1b shows this delayed importation. As expected,the whole process shifts to start after s1,

after which it is identical to the unshifted version.

Now moving to multiple importations at times s1, s2, .., sn we introduce a Heaviside step function:

H(x)

8
<

:
0, x < si

1, x > si
(25)

And sum multiple renewal processes with exogenous inputs at di↵erent times i.e.:

f(t) =
nX

i=1

fi(t) (26)

=
nX

i=1

H(t� si)
�
1�G(t� si)

�
+R0f ⇤ g(t) (27)

=
nX

i=1

µ(t� si) +R0f ⇤ g(t) (28)

Here exogenous sources occur at times si, and the endogenous process begins at s1. Our superposi-

tion of multiple renewal processes di↵ers from the S-renewal process[18] in that we do not consider

di↵ering convolutional terms. We justify this by saying there is no di↵erence in the exogenous

infections, they are the same disease as the endogenous ones, except they have entered the system

from the outside and not as a secondary infection. To our knowledge this is a new derivation of

the superposition renewal equation. To understand the dynamics of this superposition. In Figure

1c there are three exogenous events at times s1 = 0.1, s2 = 0.4, s3 = 1. These exogenous infects

seed the epidemic at allow it to increase. It is easy to see that an arbitrary function can be used

in place of the Heaviside step function. As an example, figure 1d shows the example of a constant

rate of importation at all times t, i.e ↵(1�G(t� s1)). In this figure the number of infections does

not reduce beyond the exogenous rate. This derivation justifies the use of an exogenous term in

the renewal equation and specifies how to create one.

There are two considerations to note, first,this exogenous term can be used to estimate when the

first case occurred in an epidemic. Second, when performing inference, an analytic expression for

the Heaviside function such as 1
1+e2kx for an arbitrary large k can be used. Our final renewal

equation is:

E[Z(t)] = f(t) = µ(t)|{z}
exogenous

+R0

Z t

⌧=0
f(t� ⌧)g(⌧)d⌧

| {z }
endogenous

(29)

It if of interest here to note that equation 29 has deep connections with other counting processes

such as Hawkes self exciting stochastic processes [19]. Indeed, in a nice convergence of theory, it

11
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Embedded in a hierarchical framework

Renewal model



Estimating Rt

30 March 2020  Imperial College COVID-19 Response Team 
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Figure 2: Country-level estimates of infections, deaths and Rt. Left: daily number of infections, brown 
bars are reported infections, blue bands are predicted infections, dark blue 50% credible interval (CI), 
light blue 95% CI. The number of daily infections estimated by our model drops immediately after an 
intervention, as we assume that all infected people become immediately less infectious through the 
intervention. Afterwards, if the Rt is above 1, the number of infections will starts growing again. 
Middle: daily number of deaths, brown bars are reported deaths, blue bands are predicted deaths, CI 
as in left plot. Right: time-varying reproduction number ࢚ࡾ, dark green 50% CI, light green 95% CI. 
Icons are interventions shown at the time they occurred. 

  

(I) Sweden 

 
(J) Switzerland 

  

 
(K) United Kingdom 

 
 

 

     

      

      

 
DL
O\ 
QX
P
EH
U R
I L
QI
HF
WLR
QV

 

  

  

WLPH

GH
DW
KV

 

 

 

 

 
W

 QWHUYHQWLRQV
 RPSOHWH ORFNGRZQ

 XEOLF HYHQWV EDQQHG

 FKRRO FORVXUH

 HOI LVRODWLRQ

 RFLDO GLVWDQFLQJ

   

   

 

     

     

     
 
DL
O\ 
QX
P
EH
U R
I L
QI
HF
WLR
QV

 

  

  

  

WLPH

GH
DW
KV

 

 

 

 
W

 QWHUYHQWLRQV
 RPSOHWH ORFNGRZQ

 XEOLF HYHQWV EDQQHG

 FKRRO FORVXUH

 HOI LVRODWLRQ

 RFLDO GLVWDQFLQJ

   

   

 H   

 H   

 H   

 H   

 H   

 H   

 
DL
O\ 
QX
P
EH
U R
I L
QI
HF
WLR
QV

 

  

   

   

   

WLPH

GH
DW
KV

 

 

 

 
W

 QWHUYHQWLRQV
 RPSOHWH ORFNGRZQ

 XEOLF HYHQWV EDQQHG

 FKRRO FORVXUH

 HOI LVRODWLRQ

 RFLDO GLVWDQFLQJ

   

   

30 March 2020  Imperial College COVID-19 Response Team 

DOI: https://doi.org/10.25561/77731   Page 8 of 35 

 

  

(E) Germany 

 
(F) Italy 

 
(G) Norway 

 
(H) Spain 

 

 

     

      

      

      

 
DL
O\ 
QX
P
EH
U R
I L
QI
HF
WLR
QV

 

  

  

  

WLPH

GH
DW
KV

 

 

 

 

 
W

 QWHUYHQWLRQV
 RPSOHWH ORFNGRZQ

 XEOLF HYHQWV EDQQHG

 FKRRO FORVXUH

 HOI LVRODWLRQ

 RFLDO GLVWDQFLQJ

   

   

 

      

       

       

 
DL
O\ 
QX
P
EH
U R
I L
QI
HF
WLR
QV

 

   

    

    

WLPH
GH
DW
KV

 

 

 

 

 

 
W

 QWHUYHQWLRQV
 RPSOHWH ORFNGRZQ

 XEOLF HYHQWV EDQQHG

 FKRRO FORVXUH

 HOI LVRODWLRQ

 RFLDO GLVWDQFLQJ

   

   

 

    

    

    

 
DL
O\ 
QX
P
EH
U R
I L
QI
HF
WLR
QV

 

 

 

 

 

 

WLPH

GH
DW
KV

 

 

 

 
W

 QWHUYHQWLRQV
 RPSOHWH ORFNGRZQ

 XEOLF HYHQWV EDQQHG

 FKRRO FORVXUH

 HOI LVRODWLRQ

 RFLDO GLVWDQFLQJ

   

   

 H   

 H   

 H   

 H   

 
DL
O\ 
QX
P
EH
U R
I L
QI
HF
WLR
QV

 

   

   

   

WLPH

GH
DW
KV

 

 

 

 

 
W

 QWHUYHQWLRQV
 RPSOHWH ORFNGRZQ

 XEOLF HYHQWV EDQQHG

 FKRRO FORVXUH

 HOI LVRODWLRQ

 RFLDO GLVWDQFLQJ
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1) A spatial-temporal model
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1) A spatio-temporal renewal model

Dr Juliette Unwin – Efficient spatio-temporal infectious disease models 

 2 

including mobility and environment covariates in transmission models can improve 
forecasting [15,16] and enable us to encode the underlying dynamics of the spread and 
learn more about what is driving transmission.  
 
During the pandemic, I developed a novel Bayesian hierarchical model (published in Nature) 
that generated estimates of Rt for each region, but also allowed model parameters, such as 
the effect size of different interventions, to be shared between similar regions [6]. With the 
release of within region mobility datasets from Google, I adapted this hierarchical model to 
include this movement [9]. Groups did begin to consider pre-pandemic commuter data from 
censuses to parameterise between region movement, but with social distancing restrictions 
in place and changes in working patterns this was probably not realistic [12]. Now through 
collaborations, I have mobile phone data describing movement in the UK during the alpha 
wave (winter 2020). Therefore, I am uniquely positioned to develop a spatio-temporal 
renewal model and investigate model performance for COVID-19 transmission in the UK. I 
will be able to see whether spatial-temporal models do produce more reliable forecasts and 
better inference than non-spatial models and at what spatial resolution is the most useful for 
making predictions. The role mobility played during the pandemic changed [10], so I will also 
investigate at which phases of the outbreak these types of models are most useful.   
 
For this WP, I will build on existing methods to develop a Bayesian renewal model [6,9,12] 
with three terms, each capturing new infections, i, from different types of transmission  

 
Here Rt,m is the time varying reproduction number at time t in region m and can be 
parameterised appropriately to either give us effect sizes of interventions or can be fixed to 
enable counterfactuals to be explored, g is the generation distribution that we approximate 
using the serial interval and κ are matrices describing the proportion of journeys between 
regions. I will parameterise κ using the mobility data I already have for COVID-19 
transmission in the UK at the lower tier local authority level (LTLA) (milestone M1A). This 
renewal model will be built into a wider model framework using Stan where we assume our 
true data (e.g. number cases) is negatively binomially distributed and can be linked to our 
true number of infections (it,m) through a ratio capturing underreporting levels.  This is a 
similar idea to research by Zhou et al. [17] who include mobility data in a renewal model, but 
with my proposed method we will be able to explore counterfactual scenarios such as how 
many infections we would expect for different Rts and better account for underreporting by 
fitting to more than one type of count data e.g. deaths, cases, and hospitalisations. 
 
With a PDRA, we will compare parameter estimates and forecasting performance between a 
non-spatial model and a model with constant and random mobility between all regions using 
proper scoring rules (M1B). This will enable us to identify the importance of including space 
in the COVID-19 model during different phases of the outbreak and if modelling forecast and 
inference is improved with this added dimension in our models. I hypothesise that it will be 
more important at the early stage of an outbreak when disease is not widely spread. We will 
submit a talk about this work to Epidemics 2025 (output O1A), a paper to a journal (O1B) 
and develop a policy piece that we share with organisations such as UKHSA (impact I1A).  
 
As well as developing methodology, it is also important to build tools so other researchers 
can reproduce findings and use them during future disease outbreaks. We will work with 
project partner Dr Swapnil Mishra who I worked with to develop the original package that 
was used by the Scottish government during the pandemic [18] (more information about all 
project partners is included below) and visit him in year 1 (visit V1).  Then we will work with 
other modellers within the Machine Learning and Global Health Network (MLGH) to develop 

(1) 



1) Problems

• Have discrete spatial regions where health data is recorded so 
can’t do anything continuous in space

• Need to know Rt for each region to calculate the number of 
infections (hard to parallelise) 

• Gets expensive when have multiple regions because infections 
from all regions can infect each other region

• Stan is slow



2) Recreating transmission trees



2) Problem with temporal only Hawkes
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2) Adding a spatio-temporal component

!
!"!!

𝑔 𝑡 − 𝑡# ℎ(𝑥 − 𝑥#)



2) Is this enough?

§ How to encode spatial regions in this continuous framework?
§ Would that be enough to recreate the chains?
§ Adding extra genetic information?



Any questions / thoughts / 
ideas?

Thanks to Aisling Stokes and Ethan 
Honey for some slides / code


