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For good performance, we need to choose a 
choosing a good feature extractor / kernel

linear kernel polynomial kernel RBF kernel



Problem: can’t choose a good feature 
extractor/kernel for complex data like images
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In deep-kernel methods, we switch to 
working entirely with Gram matrices

batch of 
input vectors, 𝑿

DGP

𝑃 × 1

𝑃 × 1

𝑃 × 𝑃

𝑃 × 𝑃

𝑃 × 𝑃

𝑃 = number of datapoints
𝑁ℓ = width of layer ℓ

GPs from Duvenaud et al. (2014)

hiddens,

𝒇1
𝜆 ∼ 𝒩(𝟎, 𝑲f(𝑿)))

hiddens,

𝒇2
𝜆 ∼ 𝒩(𝟎, 𝑲f(𝑭1))

outputs, 
𝐲 ∼ 𝒩 𝟎, 𝑲f(𝑭2 + 𝜎2𝑰)

𝑃 × 𝑁𝑋

What are Gram matrices?
• same shape as the kernel
• Just like the kernel, Gram matrices 

describe similarities of training points
• Gram matrix = “representation”
• Gram matrices centered on kernel
• Gram matrices have “noise”
• So Gram matrices represent prior 

variability in representations!

𝐸[𝑮2] = 𝑲f(𝑭1)

𝐸[𝑮1] = 𝑲f(𝑿)

𝑃 × 𝑁1

𝑃 × 𝑁2

Gram matrices

𝑮1 =
1
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1 𝒇𝜆

1 𝑇
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𝒙𝜆𝒙𝜆
𝑇

𝑮2 =
1

𝑁2


𝜆=1

𝑁2

𝒇𝜆
2 𝒇𝜆

2 𝑇
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𝑲𝑓(𝑿)

𝑮1 = 𝑭1𝑭1
𝑇/𝑁1

𝑲𝑓(𝑭1) 𝑲𝒇(𝑭2)

A Gram matrix view on sampling from the 
prior in a DGPs

𝑮2 = 𝑭2𝑭2
𝑇/𝑁1

So can we write the DGP prior entirely in terms of 
Gram matrices?  Yes!  But we need two tricks.
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hiddens,
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hiddens,
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Trick 1: most kernels of interest can be 
computed from the Gram matrix
• True for e.g. arccos kernels used in infinite NNs (Cho and Saul 2009)

• Also true for standard GP kernels that only depend on distance 
between datapoints 𝑖 and 𝑗, because we can recover distance from 
the Gram matrix, (Duvenaud et al. 2014)

• Overall:
𝑲𝑓 𝑭ℓ = 𝑲 𝑮ℓ



Trick 2: Gram matrices are Wishart distributed

To get next Gram matrix, we first sample a bunch of features,
𝑭ℓ ∼ 𝒩 𝟎, 𝑲 𝑮ℓ−1

And then compute the Gram matrix

𝑮ℓ =
1

𝑁ℓ
𝑭ℓ𝑭ℓ

𝑇

But this exactly matches the definition of the Wishart distribution!
𝑮ℓ ∼ 𝒲(𝑲 𝑮ℓ−1 /𝑁ℓ, 𝑁ℓ)

(e.g. see Wikipedia for pdf, moments etc.)



In deep-kernel methods, we switch to 
working entirely with Gram matrices

DKP

𝑮2 ∼ 𝒲(𝑲(𝑮1)/𝑁2, 𝑁2)

𝑮1 ∼ 𝒲 𝑲(𝑮0 /𝑁1, 𝑁1)

outputs, 
𝐲 ∼ 𝒩(𝟎, 𝑲 (𝑮2) + 𝜎2𝑰)

Trick 1: Kernel can be written as a 
function of the Gram matrix

Trick 2: Gram matrices 
are Wishart distributed

𝑮0 = 𝑿𝑿𝑇/𝑁X

𝑃 = number of datapoints
𝑁ℓ = width of layer ℓ

𝑮2 = 𝑭2𝑭2
𝑇/𝑁2

Gram matrices
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input vectors, 𝑿
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hiddens,
𝑭1 ∼ 𝒩(𝟎, 𝑲f(𝑿)))

hiddens,
𝑭2 ∼ 𝒩(𝟎, 𝑲f(𝑭1))
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𝑲(𝑮0) 𝑲(𝑮1) 𝑲(𝑮2)𝑮1 𝑮2

Sampling the prior in the kernelized DGP

DKP

𝑮2 ∼ 𝒲(𝑲(𝑮1)/𝑁2, 𝑁2)

𝑮1 ∼ 𝒲 𝑲(𝑮0 /𝑁1, 𝑁1)

outputs, 
𝐲 ∼ 𝒩 𝟎, 𝑲 (𝑮2 + 𝜎2𝑰)

𝑮0 = 𝑿𝑿𝑇/𝑁X



Developing practical methods + our results
We developed:

• Two processes: “deep Wishart process” and “deep inverse Wishart process” 

• VI with priors + approximate posteriors over Gram matrices, not features.

• a bunch of approximate posteriors (e.g.         ) 

[1] Aitchison, Yang and Ober. “Deep kernel processes”  ICML (2021)
[2] Ober and Aitchison “An approximate posterior for the deep Wishart process” NeurIPS (2021)
[3] Ober, Anson, Milsom and Aitchison “An improved approximate posterior for the deep Wishart process” UAI (2023)
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Why less(?) Bayesian deep kernel machines?

Less(?) Bayesian approach:

• simplifies implementation

• gives lower-variance updates that converge faster

• provides a cleaner link to NN / neuro-theory

• great preliminary results…



A “deep kernel machine” is an infinite-width 
DGP, trained using variational inference

𝑮2 = 𝑭2𝑭2
𝑇/𝑁2 = 𝚺2

𝑮1 = 𝑭1𝑭1
𝑇/𝑁1 = 𝚺1

𝑮0 = 𝑿𝑿𝑇/𝑁X

true posterior is 
in this family!

DGP Approximate 
Posterior

𝑄(𝒇𝜆
2) = 𝒩(𝒇𝜆

2; 𝟎, 𝚺2)

𝑄(𝒇𝜆
1) = 𝒩(𝒇𝜆

1; 𝟎, 𝚺1) 𝑃 𝒇𝜆
1 𝑿 = 𝒩(𝒇𝜆

1; 𝟎, 𝑲(𝑮0))

batch of 
input vectors, 𝑿

DGP Prior

𝑃 𝒚 𝑭2 = 𝒩 𝒚; 𝟎, 𝑲 𝑮2 + 𝜎2𝑰

𝑃 𝒇𝜆
2 𝑿 = 𝒩(𝒇𝜆

2; 𝟎, 𝑲(𝑮1))

𝑃 × 1

𝑃 × 1

𝑃 × 1



A “deep kernel machine” is an infinite-width 
DGP, trained using variational inference

𝑮2 = 𝑭2𝑭2
𝑇/𝑁2 = 𝚺2

𝑮1 = 𝑭1𝑭1
𝑇/𝑁1 = 𝚺1

𝑮0 = 𝑿𝑿𝑇/𝑁X

true posterior is 
in this family!

DGP Approximate 
Posterior

𝑄(𝒇𝜆
2) = 𝒩(𝒇𝜆

2; 𝟎, 𝐆2)

𝑄(𝒇𝜆
1) = 𝒩(𝒇𝜆

1; 𝟎, 𝐆1) 𝑃 𝒇𝜆
1 𝑿 = 𝒩(𝒇𝜆

1; 𝟎, 𝑲(𝑮0))

batch of 
input vectors, 𝑿

DGP Prior

𝑃 𝒚 𝑭2 = 𝒩 𝒚; 𝟎, 𝑲 𝑮2 + 𝜎2𝑰

𝑃 𝒇𝜆
2 𝑿 = 𝒩(𝒇𝜆

2; 𝟎, 𝑲(𝑮1))

𝑃 × 1

𝑃 × 1

𝑃 × 1



We’re doing VI, so the objective is the ELBO

ELBO 𝑮1, … , 𝑮𝐿 = log P(Y| 𝑮𝐿) − 𝛽 

ℓ=1

𝐿

𝑁ℓ𝐷KL(𝒩(0, 𝑮ℓ) ԡ𝒩(0, 𝑲(𝑮ℓ−1)))

• Optimizes Gram matrices (equivalently, approximate posterior covariances)

• Likelihood encourages Gram matrices/representations that give good 
performance on the task

• KL keeps Gram matrices, 𝑮ℓ, similar to value we’d expect from previous layer, i.e. 
𝑲(𝑮ℓ−1)

All the features have disappeared!  The objective can be 
computed analytically, as a function of just the Gram matrices!

likelihood 𝑄(𝒇𝜆
ℓ) 𝑃 𝒇𝜆

ℓ 𝑭ℓ−1approx post 
covs

temp



Taking the infinite-width limit of the ELBO 
gives the “deep kernel machine”

ELBO 𝑮1, … , 𝑮𝐿 = log P(Y| 𝑮𝐿) − 𝛽

ℓ=1

𝐿

𝑁ℓ𝐷KL 𝒩 0, 𝑮ℓ ԡ𝒩(0, 𝑲(𝑮ℓ−1))

• We take the limit for all layer widths jointly, by sending 𝑁 → ∞, with
𝑁ℓ = 𝜈ℓ𝑁

• Problem: the ELBO blows up in the infinite-width limit.

• Solution: set 𝛽=1/N

• That’s … it!  So the DKM objective is:

DKM 𝑮1, … , 𝑮𝐿 = log P(Y| 𝑮𝐿) − 

ℓ=1

𝐿

𝜈ℓ𝐷KL(𝒩(0, 𝑮ℓ) ԡ𝒩(0, 𝑲(𝑮ℓ−1)))



What is a deep kernel machine?

• A nonlinear function approximator

• With multiple layers

• Parameterised by Gram matrices, not features or weights

• Trained using the DKM objective:

DKM 𝑮1, … , 𝑮𝐿 = log P(Y| 𝑮𝐿) − 

ℓ=1

𝐿

𝜈ℓ𝐷KL(𝒩(0, 𝑮ℓ) ԡ𝒩(0, 𝑲(𝑮ℓ−1)))



The deep kernel machine viewpoint helps us 
understand theory!

For regression, the DKM objective can be written:

DKM 𝑮1, … , 𝑮𝐿 = 𝐷KL(𝒩(0, 𝒀𝒀𝑇/𝑁𝑌) ԡ𝒩 0, 𝑲(𝑮𝐿 + 𝜎2𝑰))

− σℓ=1
𝐿 𝜈ℓ𝐷KL(𝒩(0, 𝑮ℓ) ԡ𝒩(0, 𝑲(𝑮ℓ−1)))

untrained trained

picture from Wu et al. (2022)



Deep kernel machines work well in practice!

Ed has pushed performance further, to better than 94%!

But how slow are DKMs?   Surprisingly fast!

• We develop a novel inducing-point scheme

• Same FLOPs as CNN (computations ultimately look v. similar)

• Slower than a CNN, but orders of magnitude faster than “full” kernel methods in table.

Edward Milsom
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Deep kernel landscape + our priorities
Our priorities

• More architectures for DKMs 
(GNNs + transformers).

• speed/scale-up:
• memory efficiency

• lower-precision

• user-friendly library (we can 
share preliminary work)

shallow deep

feature
linear 

regression
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kernel
kernel ridge 
regression

deep kernel 
methods

Huge future opportunities:

If you’re interested, get in touch:

laurence.aitchison@bristol.ac.uk
[1] Aitchison, Yang and Ober. “Deep kernel processes”  ICML (2021)
[2] Ober and Aitchison “An approximate posterior for the deep Wishart process” NeurIPS (2021)
[3] Ober, Anson, Milsom and Aitchison “An improved approximate posterior for the deep Wishart process” UAI (2023)
[4] Yang, Robeyns, Milsom, Anson, Schoots, Aitchison “A theory of representation learning gives a deep generalisation of kernel methods” ICML (2023)
[5] Milsom, Anson, Aitchison “Convolutional deep kernel machines” ICLR (2024)



Appendix slides



Deep kernel processes should work better 
because they have fewer local optima

𝑖 = 1 𝑖 = 2



𝑖 = 1 𝑖 = 2

Deep kernel processes should work better 
because they have fewer local optima

• Implies loads of symmetric local 
optima…

• …and local optima are bad if you 
have unimodal approximate 
posteriors.

• DKPs don’t have these symmetries, 
so far fewer local optima!
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