Deep kernel process and machines

Laurence Aitchison

Sebastian Ober

Adam Yang

Edward Milsom

Ben Anson

For good performance, we need to choose a choosing a good feature extractor / kernel

Problem: can't choose a good feature extractor/kernel for complex data like images

shallow

feature linear regression

kernel kernel ridge regression

Part 1

rewrite prior in terms of Gram matrices

In deep-kernel methods, we switch to working entirely with Gram matrices

Gram matrices

What are Gram matrices?

- same shape as the kernel
- Just like the kernel, Gram matrices describe similarities of training points
- Gram matrix = "representation" ٠
- Gram matrices centered on kernel
- Gram matrices have "noise"
- So Gram matrices represent prior ٠ variability in representations!

$$\begin{split} & \underset{k=1}{\overset{P\times P}{G_2} = \frac{1}{N_2} \sum_{\lambda=1}^{N_2} f_{\lambda}^2 (f_{\lambda}^2)^T \\ E[G_2] = K_f(F_1) \\ & \underset{k=1}{\overset{P\times P}{G_1} = \frac{1}{N_1} \sum_{\lambda=1}^{N_1} f_{\lambda}^1 (f_{\lambda}^1)^T \\ E[G_1] = K_f(X) \\ & \underset{k=1}{\overset{P\times P}{G_0} = \frac{1}{N_0} \sum_{\lambda=1}^{N_0} x_{\lambda} x_{\lambda}^T \\ & \underset{k=1}{\overset{P\times P}{f_{\lambda}}} (f_{\lambda}^2) \\ & \underset{k=1}{\overset{P\times P}{f_{\lambda}}$$

P = number of datapoints $N_{\ell} =$ width of layer ℓ

DGP

In deep-kernel methods, we switch to working entirely with Gram matrices

Gram matrices

What are Gram matrices?

- same shape as the kernel
- Just like the kernel, Gram matrices describe similarities of training points
- Gram matrix = "representation"
- Gram matrices centered on kernel
- Gram matrices have "noise"
- So Gram matrices represent prior variability in representations!

$$\boldsymbol{G}_{2}^{P \times P} = \frac{1}{N_{2}} \boldsymbol{F}_{2} \boldsymbol{F}_{2}^{T}$$
$$\boldsymbol{F}_{2} = \boldsymbol{K}_{1} (\boldsymbol{F}_{1})$$

$$\boldsymbol{G}_{1}^{P \times P} = \frac{1}{N_{1}} \boldsymbol{F}_{1} \boldsymbol{F}_{1}^{T}$$
$$\boldsymbol{F}_{1}^{T} = \boldsymbol{K}_{f}(\boldsymbol{X})$$

 ${}^{P \times P}_{\boldsymbol{G}_0} = \frac{1}{N_0} \boldsymbol{X} \boldsymbol{X}^T$

ם ע ח

P = number of datapoints $N_{\ell} =$ width of layer ℓ

outputs,

input vectors, X

 $P \times N_X$

GPs from Duvenaud et al. (2014)

A Gram matrix view on sampling from the width of layer ℓ prior in a DGPs

outputs, $\mathbf{y} \sim \mathcal{N}(\mathbf{0}, \mathbf{K}_{\mathrm{f}}(\mathbf{F}_{2}) + \sigma^{2}\mathbf{I})$ hiddens, $K_f(X)$ f_2^{λ} ~ $\mathcal{N}(\mathbf{0}, \mathbf{K}_{\mathrm{f}}(\mathbf{F}_{1}))$ hiddens, $\boldsymbol{G}_1 = \boldsymbol{F}_1 \boldsymbol{F}_1^T / N_1 \qquad \boldsymbol{G}_2 = \boldsymbol{F}_2 \boldsymbol{F}_2^T / N_1$ $f_1^{\lambda} \sim \mathcal{N}(\mathbf{0}, K_{\mathrm{f}}(X)))$ batch of So can we write the DGP prior entirely in terms of input vectors, X $P \times N_X$ Gram matrices? Yes! But we need two tricks.

DGP

Trick 1: most kernels of interest can be computed from the Gram matrix

- True for e.g. arccos kernels used in infinite NNs (Cho and Saul 2009)
- Also true for standard GP kernels that only depend on distance between datapoints *i* and *j*, because we can recover distance from the Gram matrix, (Duvenaud et al. 2014)

$$R_{ij}(\mathbf{G}) = \frac{1}{N} \sum_{\lambda=1}^{N} \left(F_{i\lambda} - F_{j\lambda} \right)^2$$

= $\frac{1}{N} \sum_{\lambda=1}^{N} \left(\left(F_{i\lambda} \right)^2 - 2F_{i\lambda}F_{j\lambda} + \left(F_{j\lambda} \right)^2 \right)$
= $G_{ii} - 2G_{ij} + G_{jj}$

• Overall:

$$K_f(F_\ell) = K(G_\ell)$$

Trick 2: Gram matrices are Wishart distributed

To get next Gram matrix, we first sample a bunch of features, $F_{\ell} \sim \mathcal{N}(\mathbf{0}, \mathbf{K}(\mathbf{G}_{\ell-1}))$

And then compute the Gram matrix

$$\boldsymbol{G}_{\ell} = \frac{1}{N_{\ell}} \boldsymbol{F}_{\ell} \boldsymbol{F}_{\ell}^{T}$$

But this exactly matches the definition of the Wishart distribution! $G_{\ell} \sim \mathcal{W}(K(G_{\ell-1})/N_{\ell}, N_{\ell})$

(e.g. see Wikipedia for pdf, moments etc.)

In deep-kernel methods, we switch to working entirely with Gram matrices

DKP **Gram matrices** DGP outputs, outputs, $\mathbf{y} \sim \mathcal{N}(\mathbf{0}, \mathbf{K}(\mathbf{G}_2) + \sigma^2 \mathbf{I})$ $\mathbf{y} \sim \mathcal{N}(\mathbf{0}, \mathbf{K}_{\mathrm{f}}(\mathbf{F}_{2}) + \sigma^{2}\mathbf{I})$ Trick 1: Kernel can be written as a function of the Gram matrix hiddens, $\boldsymbol{G}_2 = \boldsymbol{F}_2 \boldsymbol{F}_2^T / N_2$ $\boldsymbol{G}_2 \sim \mathcal{W}(\boldsymbol{K}(\boldsymbol{G}_1)/N_2, N_2)$ $F_{2} \sim \mathcal{N}(\mathbf{0}, K_{\mathrm{f}}(F_{1}))$ Trick 2: Gram matrices are Wishart distributed hiddens, $\mathbf{G}_{1} = \mathbf{F}_{1}\mathbf{F}_{1}^{T}/N_{1}$ $\boldsymbol{G}_1 \sim \boldsymbol{\mathcal{W}}(\boldsymbol{K}(\boldsymbol{G}_0)/N_1, N_1)$ $F_{1} \sim \mathcal{N}(\mathbf{0}, K_{f}(X)))$ batch of $\boldsymbol{G}_{0} = \boldsymbol{X}\boldsymbol{X}^{T}/N_{X}$ $G_0 = XX^T / N_{\rm x}$ input vectors, X $P \times N_X$

GPs from Duvenaud et al. (2014)

P = number of datapoints $N_{\ell} =$ width of layer ℓ

Sampling the prior in the kernelized DGP

Developing practical methods + our results We developed:

- Two processes: "deep Wishart process" and "deep inverse Wishart process"
- VI with priors + approximate posteriors over Gram matrices, not features.
- a bunch of approximate posteriors (e.g. $\mathrm{Q}_{\mathcal{GW}}$)

				DWP	
	Dataset	DGP	$\mathrm{Q}_{\mathcal{GW}}$	$\mathrm{Q}_{\mathrm{A} extsf{-}\mathcal{G}\mathcal{W}}$	$\mathrm{Q}_{\mathrm{AB} extsf{-}\mathcal{GW}}$
	BOSTON	$\textbf{-2.43}\pm0.04$	$\textbf{-2.38} \pm \textbf{0.04}$	$\textbf{-2.39}\pm0.05$	$\textbf{-2.38} \pm \textbf{0.04}$
	CONCRETE	$\textbf{-3.13}\pm0.02$	$\textbf{-3.13}\pm0.02$	$\textbf{-3.07} \pm \textbf{0.02}$	$\textbf{-3.08}\pm0.02$
	Energy	$\textbf{-0.71} \pm 0.03$	$\textbf{-0.71} \pm 0.03$	$\textbf{-0.70} \pm \textbf{0.03}$	-0.70 \pm 0.03
	Kin8nm	1.38 ± 0.00	1.40 ± 0.01	$\textbf{1.41} \pm \textbf{0.01}$	$\textbf{1.41} \pm \textbf{0.01}$
LL	NAVAL	8.28 ± 0.04	8.17 ± 0.07	$\textbf{8.40} \pm \textbf{0.02}$	8.10 ± 0.19
	Power	$\textbf{-2.78} \pm 0.01$	$\textbf{-2.77}\pm0.01$	$\textbf{-2.76} \pm \textbf{0.01}$	$\textbf{-2.76} \pm \textbf{0.01}$
	PROTEIN	$\textbf{-2.73}\pm0.01$	$\textbf{-2.72}\pm0.01$	$\textbf{-2.71} \pm \textbf{0.01}$	$\textbf{-2.70} \pm \textbf{0.00}$
	WINE	$\textbf{-0.96} \pm 0.01$	$\textbf{-0.96} \pm 0.01$	$\textbf{-0.96} \pm 0.01$	$\textbf{-0.96} \pm 0.01$
	YACHT	$\textbf{-0.73} \pm 0.07$	$\textbf{-0.58} \pm 0.06$	$\textbf{-0.22}\pm0.09$	$\textbf{-0.18} \pm \textbf{0.07}$

[1] Aitchison, Yang and Ober. "Deep kernel processes" ICML (2021)

[2] Ober and Aitchison "An approximate posterior for the deep Wishart process" NeurIPS (2021)

[3] Ober, Anson, Milsom and Aitchison "An improved approximate posterior for the deep Wishart process" UAI (2023)

Part 1

rewrite prior in terms of Gram matrices

Part 2

Why less(?) Bayesian deep kernel machines?

Less(?) Bayesian approach:

- simplifies implementation
- gives lower-variance updates that converge faster
- provides a cleaner link to NN / neuro-theory
- great preliminary results...

A "deep kernel machine" is an infinite-width DGP, trained using variational inference

A "deep kernel machine" is an infinite-width DGP, trained using variational inference

We're doing VI, so the objective is the ELBO

- Optimizes Gram matrices (equivalently, approximate posterior covariances)
- Likelihood encourages Gram matrices/representations that give good performance on the task
- KL keeps Gram matrices, G_{ℓ} , similar to value we'd expect from previous layer, i.e. $K(G_{\ell-1})$

All the features have disappeared! The objective can be computed analytically, as a function of just the Gram matrices!

Taking the infinite-width limit of the ELBO gives the "deep kernel machine" $ELBO(G_1, ..., G_L) = \log P(\mathbf{Y} | G_L) - \beta \sum_{\ell=1}^L N_\ell D_{KL}(\mathcal{N}(0, G_\ell) || \mathcal{N}(0, K(G_{\ell-1})))$

- We take the limit for all layer widths jointly, by sending $N \to \infty$, with $N_\ell = \nu_\ell N$
- Problem: the ELBO blows up in the infinite-width limit.
- Solution: set $\beta = 1/N$
- That's ... it! So the DKM objective is:

$$DKM(\boldsymbol{G}_1, \dots, \boldsymbol{G}_L) = \log P(\boldsymbol{Y} | \boldsymbol{G}_L) - \sum_{\ell=1}^L \nu_\ell D_{KL}(\mathcal{N}(0, \boldsymbol{G}_\ell) || \mathcal{N}(0, \boldsymbol{K}(\boldsymbol{G}_{\ell-1})))$$

What is a deep kernel machine?

- A nonlinear function approximator
- With multiple layers
- Parameterised by *Gram matrices*, not features or weights
- Trained using the DKM objective:

$$DKM(\boldsymbol{G}_1, \dots, \boldsymbol{G}_L) = \log P(\mathbf{Y} | \boldsymbol{G}_L) - \sum_{\ell=1}^L \nu_\ell D_{KL}(\mathcal{N}(0, \boldsymbol{G}_\ell) || \mathcal{N}(0, \boldsymbol{K}(\boldsymbol{G}_{\ell-1})))$$

The deep kernel machine viewpoint helps us understand theory!

For regression, the DKM objective can be written:

 $DKM(\boldsymbol{G}_{1}, \dots, \boldsymbol{G}_{L}) = D_{KL}(\mathcal{N}(0, \boldsymbol{Y}\boldsymbol{Y}^{T}/N_{Y}) \| \mathcal{N}(0, \boldsymbol{K}(\boldsymbol{G}_{L}) + \sigma^{2}\boldsymbol{I}))$ $-\sum_{\ell=1}^{L} \nu_{\ell} D_{KL}(\mathcal{N}(0, \boldsymbol{G}_{\ell}) \| \mathcal{N}(0, \boldsymbol{K}(\boldsymbol{G}_{\ell-1})))$

picture from Wu et al. (2022)

Deep kernel machines work well in practice!

	Paper	Method	CIFAR-10
	This paper	DKM-DA-GAP	92.69%
	Novak et al (2018)	NNGP-GAP	77.43%
Kernel	Arora et al (2019)	NNGP-GAP	83.75%
methods	Lee et al. (2020)	NNGP-GAP-DA	84.8%
without	Li et al. (2019)	NNGP-LAP-flip	88.92%
parameters	Shankar et al. (2020)	Myrtle10	89.80%
	Adlam et al (2023)	Tuned Myrtle10 DA CG	91.2%

Edward Milsom

Ed has pushed performance further, to better than 94%!

But how slow are DKMs? Surprisingly fast!

- We develop a novel inducing-point scheme
- Same FLOPs as CNN (computations ultimately look v. similar)
- Slower than a CNN, but orders of magnitude faster than "full" kernel methods in table.

Deep kernel landscape + our priorities

Our priorities

- More architectures for DKMs (GNNs + transformers).
- speed/scale-up:
 - memory efficiency
 - lower-precision
- user-friendly library (we can share preliminary work)

Huge future opportunities:

	shallow	deep				
feature	linear regression	neural net				
kernel	kernel ridge regression	deep kernel methods				
If you're interested, get in touch:						

laurence.aitchison@bristol.ac.uk

- [1] Aitchison, Yang and Ober. "Deep kernel processes" ICML (2021)
- [2] Ober and Aitchison "An approximate posterior for the deep Wishart process" NeurIPS (2021)
- [3] Ober, Anson, Milsom and Aitchison "An improved approximate posterior for the deep Wishart process" UAI (2023)
- [4] Yang, Robeyns, Milsom, Anson, Schoots, Aitchison "A theory of representation learning gives a deep generalisation of kernel methods" ICML (2023)
- [5] Milsom, Anson, Aitchison "Convolutional deep kernel machines" ICLR (2024)

Appendix slides

Deep kernel processes should work better because they have fewer local optima

Deep kernel processes should work better because they have fewer local optima

- Implies loads of symmetric local optima...
- …and local optima are bad if you have unimodal approximate posteriors.
- DKPs don't have these symmetries, so *far* fewer local optima!

