
Deep kernel process and
machines

Laurence Aitchison

Edward MilsomAdam Yang Ben AnsonSebastian Ober

shallow deep

feature
linear

regression

kernel
kernel ridge
regression

For good performance, we need to choose a
choosing a good feature extractor / kernel

linear kernel polynomial kernel RBF kernel

Problem: can’t choose a good feature
extractor/kernel for complex data like images

shallow

feature
linear

regression

kernel
kernel ridge
regression

shallow deep

feature
linear

regression
neural net

kernel
kernel ridge
regression

Multiple layers
Flexibility at each layer

shallow deep

feature
linear

regression
neural net

kernel
kernel ridge
regression

deep kernel
methods

Multiple layers
Flexibility at each layer

deep Gaussian
processes

deep kernel
processes

deep kernel
machines

Summary

rewrite prior in terms
of Gram matrices

infinite-width
limit

Infinite-width
limit

deep Gaussian
processes

deep kernel
processes

deep kernel
machines

Part 1

rewrite prior in terms
of Gram matrices

In deep-kernel methods, we switch to
working entirely with Gram matrices

batch of
input vectors, 𝑿

DGP

𝑃 × 1

𝑃 × 1

𝑃 × 𝑃

𝑃 × 𝑃

𝑃 × 𝑃

𝑃 = number of datapoints
𝑁ℓ = width of layer ℓ

GPs from Duvenaud et al. (2014)

hiddens,

𝒇1
𝜆 ∼ 𝒩(𝟎, 𝑲f(𝑿)))

hiddens,

𝒇2
𝜆 ∼ 𝒩(𝟎, 𝑲f(𝑭1))

outputs,
𝐲 ∼ 𝒩 𝟎, 𝑲f(𝑭2 + 𝜎2𝑰)

𝑃 × 𝑁𝑋

What are Gram matrices?
• same shape as the kernel
• Just like the kernel, Gram matrices

describe similarities of training points
• Gram matrix = “representation”
• Gram matrices centered on kernel
• Gram matrices have “noise”
• So Gram matrices represent prior

variability in representations!

𝐸[𝑮2] = 𝑲f(𝑭1)

𝐸[𝑮1] = 𝑲f(𝑿)

𝑃 × 𝑁1

𝑃 × 𝑁2

Gram matrices

𝑮1 =
1

𝑁1

𝜆=1

𝑁1

𝒇𝜆
1 𝒇𝜆

1 𝑇

𝑮0 =
1

𝑁0

𝜆=1

𝑁0

𝒙𝜆𝒙𝜆
𝑇

𝑮2 =
1

𝑁2

𝜆=1

𝑁2

𝒇𝜆
2 𝒇𝜆

2 𝑇

𝑃 × 𝑃

𝑃 × 𝑃

𝑃 × 𝑃

In deep-kernel methods, we switch to
working entirely with Gram matrices

batch of
input vectors, 𝑿

DGP

𝑃 × 1

𝑃 × 1

𝑃 × 𝑃

𝑃 × 𝑃

𝑃 × 𝑃

𝑃 = number of datapoints
𝑁ℓ = width of layer ℓ

GPs from Duvenaud et al. (2014)

hiddens,

𝒇1
𝜆 ∼ 𝒩(𝟎, 𝑲f(𝑿)))

hiddens,

𝒇2
𝜆 ∼ 𝒩(𝟎, 𝑲f(𝑭1))

outputs,
𝐲 ∼ 𝒩 𝟎, 𝑲f(𝑭2 + 𝜎2𝑰)

𝑃 × 𝑁𝑋

𝐸[𝑮2] = 𝑲f(𝑭1)

𝐸[𝑮1] = 𝑲f(𝑿)

𝑃 × 𝑁1

𝑃 × 𝑁2

Gram matrices

𝑮1 =
1

𝑁1
𝑭1𝑭1

𝑇

𝑮0 =
1

𝑁0
𝑿𝑿𝑇

𝑮2 =
1

𝑁2
𝑭2𝑭2

𝑇

𝑃 × 𝑃

𝑃 × 𝑃

𝑃 × 𝑃What are Gram matrices?
• same shape as the kernel
• Just like the kernel, Gram matrices

describe similarities of training points
• Gram matrix = “representation”
• Gram matrices centered on kernel
• Gram matrices have “noise”
• So Gram matrices represent prior

variability in representations!

𝑲𝑓(𝑿)

𝑮1 = 𝑭1𝑭1
𝑇/𝑁1

𝑲𝑓(𝑭1) 𝑲𝒇(𝑭2)

A Gram matrix view on sampling from the
prior in a DGPs

𝑮2 = 𝑭2𝑭2
𝑇/𝑁1

So can we write the DGP prior entirely in terms of
Gram matrices? Yes! But we need two tricks.

batch of
input vectors, 𝑿

DGP

𝑃 × 1

𝑃 × 1

𝑃 × 𝑃

𝑃 × 𝑃

𝑃 × 𝑃

𝑃 = number of datapoints
𝑁ℓ = width of layer ℓ

GPs from Duvenaud et al. (2014)

hiddens,

𝒇1
𝜆 ∼ 𝒩(𝟎, 𝑲f(𝑿)))

hiddens,

𝒇2
𝜆 ∼ 𝒩(𝟎, 𝑲f(𝑭1))

outputs,
𝐲 ∼ 𝒩 𝟎, 𝑲f(𝑭2 + 𝜎2𝑰)

𝑃 × 𝑁𝑋

𝑃 × 𝑁1

𝑃 × 𝑁2

Trick 1: most kernels of interest can be
computed from the Gram matrix
• True for e.g. arccos kernels used in infinite NNs (Cho and Saul 2009)

• Also true for standard GP kernels that only depend on distance
between datapoints 𝑖 and 𝑗, because we can recover distance from
the Gram matrix, (Duvenaud et al. 2014)

• Overall:
𝑲𝑓 𝑭ℓ = 𝑲 𝑮ℓ

Trick 2: Gram matrices are Wishart distributed

To get next Gram matrix, we first sample a bunch of features,
𝑭ℓ ∼ 𝒩 𝟎, 𝑲 𝑮ℓ−1

And then compute the Gram matrix

𝑮ℓ =
1

𝑁ℓ
𝑭ℓ𝑭ℓ

𝑇

But this exactly matches the definition of the Wishart distribution!
𝑮ℓ ∼ 𝒲(𝑲 𝑮ℓ−1 /𝑁ℓ, 𝑁ℓ)

(e.g. see Wikipedia for pdf, moments etc.)

In deep-kernel methods, we switch to
working entirely with Gram matrices

DKP

𝑮2 ∼ 𝒲(𝑲(𝑮1)/𝑁2, 𝑁2)

𝑮1 ∼ 𝒲 𝑲(𝑮0 /𝑁1, 𝑁1)

outputs,
𝐲 ∼ 𝒩(𝟎, 𝑲 (𝑮2) + 𝜎2𝑰)

Trick 1: Kernel can be written as a
function of the Gram matrix

Trick 2: Gram matrices
are Wishart distributed

𝑮0 = 𝑿𝑿𝑇/𝑁X

𝑃 = number of datapoints
𝑁ℓ = width of layer ℓ

𝑮2 = 𝑭2𝑭2
𝑇/𝑁2

Gram matrices

batch of
input vectors, 𝑿

DGP

𝑮1 = 𝑭1𝑭1
𝑇/𝑁1

𝑮0 = 𝑿𝑿𝑇/𝑁X

𝑃 × 𝑁1

𝑃 × 𝑁2

𝑃 × 𝑃

𝑃 × 𝑃

𝑃 × 𝑃

𝑃 × 𝑃

𝑃 × 𝑃

𝑃 × 𝑃

GPs from Duvenaud et al. (2014)

hiddens,
𝑭1 ∼ 𝒩(𝟎, 𝑲f(𝑿)))

hiddens,
𝑭2 ∼ 𝒩(𝟎, 𝑲f(𝑭1))

outputs,
𝐲 ∼ 𝒩 𝟎, 𝑲f(𝑭2 + 𝜎2𝑰)

𝑃 × 𝑁𝑋

𝑲(𝑮0) 𝑲(𝑮1) 𝑲(𝑮2)𝑮1 𝑮2

Sampling the prior in the kernelized DGP

DKP

𝑮2 ∼ 𝒲(𝑲(𝑮1)/𝑁2, 𝑁2)

𝑮1 ∼ 𝒲 𝑲(𝑮0 /𝑁1, 𝑁1)

outputs,
𝐲 ∼ 𝒩 𝟎, 𝑲 (𝑮2 + 𝜎2𝑰)

𝑮0 = 𝑿𝑿𝑇/𝑁X

Developing practical methods + our results
We developed:

• Two processes: “deep Wishart process” and “deep inverse Wishart process”

• VI with priors + approximate posteriors over Gram matrices, not features.

• a bunch of approximate posteriors (e.g.)

[1] Aitchison, Yang and Ober. “Deep kernel processes” ICML (2021)
[2] Ober and Aitchison “An approximate posterior for the deep Wishart process” NeurIPS (2021)
[3] Ober, Anson, Milsom and Aitchison “An improved approximate posterior for the deep Wishart process” UAI (2023)

infinite-width
limit

deep Gaussian
processes

deep kernel
processes

deep kernel
machines

Part 1

rewrite prior in terms
of Gram matrices

deep Gaussian
processes

deep kernel
processes

deep kernel
machines

Part 2

rewrite prior in terms
of Gram matrices

infinite-width
limit

Why less(?) Bayesian deep kernel machines?

Less(?) Bayesian approach:

• simplifies implementation

• gives lower-variance updates that converge faster

• provides a cleaner link to NN / neuro-theory

• great preliminary results…

A “deep kernel machine” is an infinite-width
DGP, trained using variational inference

𝑮2 = 𝑭2𝑭2
𝑇/𝑁2 = 𝚺2

𝑮1 = 𝑭1𝑭1
𝑇/𝑁1 = 𝚺1

𝑮0 = 𝑿𝑿𝑇/𝑁X

true posterior is
in this family!

DGP Approximate
Posterior

𝑄(𝒇𝜆
2) = 𝒩(𝒇𝜆

2; 𝟎, 𝚺2)

𝑄(𝒇𝜆
1) = 𝒩(𝒇𝜆

1; 𝟎, 𝚺1) 𝑃 𝒇𝜆
1 𝑿 = 𝒩(𝒇𝜆

1; 𝟎, 𝑲(𝑮0))

batch of
input vectors, 𝑿

DGP Prior

𝑃 𝒚 𝑭2 = 𝒩 𝒚; 𝟎, 𝑲 𝑮2 + 𝜎2𝑰

𝑃 𝒇𝜆
2 𝑿 = 𝒩(𝒇𝜆

2; 𝟎, 𝑲(𝑮1))

𝑃 × 1

𝑃 × 1

𝑃 × 1

A “deep kernel machine” is an infinite-width
DGP, trained using variational inference

𝑮2 = 𝑭2𝑭2
𝑇/𝑁2 = 𝚺2

𝑮1 = 𝑭1𝑭1
𝑇/𝑁1 = 𝚺1

𝑮0 = 𝑿𝑿𝑇/𝑁X

true posterior is
in this family!

DGP Approximate
Posterior

𝑄(𝒇𝜆
2) = 𝒩(𝒇𝜆

2; 𝟎, 𝐆2)

𝑄(𝒇𝜆
1) = 𝒩(𝒇𝜆

1; 𝟎, 𝐆1) 𝑃 𝒇𝜆
1 𝑿 = 𝒩(𝒇𝜆

1; 𝟎, 𝑲(𝑮0))

batch of
input vectors, 𝑿

DGP Prior

𝑃 𝒚 𝑭2 = 𝒩 𝒚; 𝟎, 𝑲 𝑮2 + 𝜎2𝑰

𝑃 𝒇𝜆
2 𝑿 = 𝒩(𝒇𝜆

2; 𝟎, 𝑲(𝑮1))

𝑃 × 1

𝑃 × 1

𝑃 × 1

We’re doing VI, so the objective is the ELBO

ELBO 𝑮1, … , 𝑮𝐿 = log P(Y| 𝑮𝐿) − 𝛽

ℓ=1

𝐿

𝑁ℓ𝐷KL(𝒩(0, 𝑮ℓ) ԡ𝒩(0, 𝑲(𝑮ℓ−1)))

• Optimizes Gram matrices (equivalently, approximate posterior covariances)

• Likelihood encourages Gram matrices/representations that give good
performance on the task

• KL keeps Gram matrices, 𝑮ℓ, similar to value we’d expect from previous layer, i.e.
𝑲(𝑮ℓ−1)

All the features have disappeared! The objective can be
computed analytically, as a function of just the Gram matrices!

likelihood 𝑄(𝒇𝜆
ℓ) 𝑃 𝒇𝜆

ℓ 𝑭ℓ−1approx post
covs

temp

Taking the infinite-width limit of the ELBO
gives the “deep kernel machine”

ELBO 𝑮1, … , 𝑮𝐿 = log P(Y| 𝑮𝐿) − 𝛽

ℓ=1

𝐿

𝑁ℓ𝐷KL 𝒩 0, 𝑮ℓ ԡ𝒩(0, 𝑲(𝑮ℓ−1))

• We take the limit for all layer widths jointly, by sending 𝑁 → ∞, with
𝑁ℓ = 𝜈ℓ𝑁

• Problem: the ELBO blows up in the infinite-width limit.

• Solution: set 𝛽=1/N

• That’s … it! So the DKM objective is:

DKM 𝑮1, … , 𝑮𝐿 = log P(Y| 𝑮𝐿) −

ℓ=1

𝐿

𝜈ℓ𝐷KL(𝒩(0, 𝑮ℓ) ԡ𝒩(0, 𝑲(𝑮ℓ−1)))

What is a deep kernel machine?

• A nonlinear function approximator

• With multiple layers

• Parameterised by Gram matrices, not features or weights

• Trained using the DKM objective:

DKM 𝑮1, … , 𝑮𝐿 = log P(Y| 𝑮𝐿) −

ℓ=1

𝐿

𝜈ℓ𝐷KL(𝒩(0, 𝑮ℓ) ԡ𝒩(0, 𝑲(𝑮ℓ−1)))

The deep kernel machine viewpoint helps us
understand theory!

For regression, the DKM objective can be written:

DKM 𝑮1, … , 𝑮𝐿 = 𝐷KL(𝒩(0, 𝒀𝒀𝑇/𝑁𝑌) ԡ𝒩 0, 𝑲(𝑮𝐿 + 𝜎2𝑰))

− σℓ=1
𝐿 𝜈ℓ𝐷KL(𝒩(0, 𝑮ℓ) ԡ𝒩(0, 𝑲(𝑮ℓ−1)))

untrained trained

picture from Wu et al. (2022)

Deep kernel machines work well in practice!

Ed has pushed performance further, to better than 94%!

But how slow are DKMs? Surprisingly fast!

• We develop a novel inducing-point scheme

• Same FLOPs as CNN (computations ultimately look v. similar)

• Slower than a CNN, but orders of magnitude faster than “full” kernel methods in table.

Edward Milsom

deep Gaussian
processes

deep kernel
processes

deep kernel
machines

Summary

rewrite prior in terms
of Gram matrices

infinite-width
limit

Deep kernel landscape + our priorities
Our priorities

• More architectures for DKMs
(GNNs + transformers).

• speed/scale-up:
• memory efficiency

• lower-precision

• user-friendly library (we can
share preliminary work)

shallow deep

feature
linear

regression
neural net

kernel
kernel ridge
regression

deep kernel
methods

Huge future opportunities:

If you’re interested, get in touch:

laurence.aitchison@bristol.ac.uk
[1] Aitchison, Yang and Ober. “Deep kernel processes” ICML (2021)
[2] Ober and Aitchison “An approximate posterior for the deep Wishart process” NeurIPS (2021)
[3] Ober, Anson, Milsom and Aitchison “An improved approximate posterior for the deep Wishart process” UAI (2023)
[4] Yang, Robeyns, Milsom, Anson, Schoots, Aitchison “A theory of representation learning gives a deep generalisation of kernel methods” ICML (2023)
[5] Milsom, Anson, Aitchison “Convolutional deep kernel machines” ICLR (2024)

Appendix slides

Deep kernel processes should work better
because they have fewer local optima

𝑖 = 1 𝑖 = 2

𝑖 = 1 𝑖 = 2

Deep kernel processes should work better
because they have fewer local optima

• Implies loads of symmetric local
optima…

• …and local optima are bad if you
have unimodal approximate
posteriors.

• DKPs don’t have these symmetries,
so far fewer local optima!

	幻灯片 1: Deep kernel process and machines
	幻灯片 2
	幻灯片 3
	幻灯片 4: For good performance, we need to choose a choosing a good feature extractor / kernel
	幻灯片 5: Problem: can’t choose a good feature extractor/kernel for complex data like images
	幻灯片 6
	幻灯片 7
	幻灯片 8
	幻灯片 9
	幻灯片 10
	幻灯片 12: In deep-kernel methods, we switch to working entirely with Gram matrices
	幻灯片 13: In deep-kernel methods, we switch to working entirely with Gram matrices
	幻灯片 14: A Gram matrix view on sampling from the prior in a DGPs
	幻灯片 15: Trick 1: most kernels of interest can be computed from the Gram matrix
	幻灯片 16: Trick 2: Gram matrices are Wishart distributed
	幻灯片 17: In deep-kernel methods, we switch to working entirely with Gram matrices
	幻灯片 18: Sampling the prior in the kernelized DGP
	幻灯片 19: Developing practical methods + our results
	幻灯片 20
	幻灯片 21
	幻灯片 22: Why less(?) Bayesian deep kernel machines?
	幻灯片 23: A “deep kernel machine” is an infinite-width DGP, trained using variational inference
	幻灯片 24: A “deep kernel machine” is an infinite-width DGP, trained using variational inference
	幻灯片 25: We’re doing VI, so the objective is the ELBO
	幻灯片 26: Taking the infinite-width limit of the ELBO gives the “deep kernel machine”
	幻灯片 27: What is a deep kernel machine?
	幻灯片 28: The deep kernel machine viewpoint helps us understand theory!
	幻灯片 29: Deep kernel machines work well in practice!
	幻灯片 30
	幻灯片 31: Deep kernel landscape + our priorities
	幻灯片 32: Appendix slides
	幻灯片 33: Deep kernel processes should work better because they have fewer local optima
	幻灯片 34: Deep kernel processes should work better because they have fewer local optima

