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Background: Kernel methods

RKHS1

(Infinite dimensional Hilbert sp.)

Linear

• Kernel PCA, Kernel SVM

• Learning complex-valued functions

X
(Finite dimensional sp.)

Nonlinear

Feature map ϕ
x

sample
(temperature, traffic amount,...)

ϕ(x)

complex-valued function

Advantages of RKHS
• Nonlinearity in the original space is transformed into a linear one.
• We can compute inner products in RKHS exactly by computers.

1Schölkopf and Smola, MIT Press, Cambridge, 2001
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Background: Reproducing kernel Hilbert space (RKHS)

Let X be a set. A map k : X ×X → C is called a positive definite kernel if
it satisfies:

1. k(x, y) = k(y, x) for x, y ∈ X and
2.

∑n
t,s=1 ctk(xt, xs)cs ≥ 0 for n ∈ N, c1, . . . , cn ∈ C, x1, . . . , xn ∈ X .

ϕ(x) := k(·, x) (ϕ : X → CX : feature map associated with k),

Hk,0 :=
{∑n

t=1 ϕ(xt)ct
∣∣ n ∈ N, ct ∈ C, xt ∈ X

}
. (1)

We can define an inner product 〈·, ·〉k : Hk,0 ×Hk,0 → C as〈∑n
s=1 ϕ(xs)cs,

∑l
t=1 ϕ(yt)dt

〉
k
:=

∑n
s=1

∑l
t=1 csk(xs, yt)dt. (2)

Reproducing property: 〈ϕ(x), v〉k = v(x) for v ∈ Hk and x ∈ X
RKHS Hk: completion of Hk,0
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Background: Representer theorem in RKHSs

The representer theorem guarantees that solutions of a minimization
problem are represented only with given samples2.

Hk: RKHS
R+ := {a ∈ R | a ≥ 0}

Theorem 1 Representer theorem in RKHSs
Let x1, . . . , xn ∈ X and a1, . . . , an ∈ C. Let h : X × C2 → R+ be an error
function and g : R+ → R+ satisfy g(c) < g(d) for c < d. Then, any
u ∈ Hk minimizing

∑n
i=1 h(xi, ai, u(xi)) + g(‖u‖k) admits a

representation of the form
∑n

i=1 ϕ(xi)ci for some c1, . . . , cn ∈ C.

The result can be applied to supervised problems.

2Schölkopf et al., COLT 2001.
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Goal: Generalization of data analysis in RKHS to RKHM

RKHM
(Infinite dimensional Hilbert C∗-module)

Linear + C∗-algebra-valued inner product

X
(Structured data sp.)

Nonlinear

Feature map ϕ
x

sample
(function, image,...)

ϕ(x)

C∗-algebra-valued function

Advantages of RKHM:
• C∗-algebra-valued inner products extract information of structures.

We constructed a framework of data analysis with RKHM.
• We can reconstruct existing RKHSs by using RKHMs.
• We have shown fundamental properties for data analysis in RKHMs

(e.g. representer theorem, kernel mean embedding).
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C∗-algebra and von Neumann-algebra

C∗-algebra : Banach space equipped with a product & an involution ∗

+ C∗-property
e.g.

• C(Z) for a compact space Z
Norm : sup norm, Product : pointwise product,
Involution : pointwise complex conjugate

• K(H) = {compact operators on a Hilbert space H}
Norm : operator norm, Product : composition, Involution : adjoint

Von Neumann-algebra : C∗-algebra that is closed in the strong operator
topology

e.g.
• L∞(Z) for a measure space Z
• B(H) = {bounded linear operators on a Hilbert space H}
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Positivity and order in C∗-algebras

For optimization, we need the notion of “positive” and order.

A: C∗-algebra

Definition 1 Positive

Let a ∈ A. If a = b∗b for some b ∈ A, then a is called positive. We put
A+ = {a ∈ A | a is positive}.

We can define a (partial) order ≤A in A by
“a ≤A b if and only if b− a is positive”.

We denote a <A b if b− a is positive and not zero.

We consider supremum, maximum, infimum, and minimum in A with
respect to the order ≤A.
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Hilbert C∗-module

A: C∗-algebra
M: right A-module (u ∈ M, c ∈ A → uc ∈ M)

Definition 2 A-valued inner product
A map 〈·, ·〉 : M×M → A is called an A-valued inner product if it
satisfies the following properties for u, v, w ∈ M and c, d ∈ A:

1. 〈u, vc+ wd〉 = 〈u, v〉 c+ 〈u,w〉 d,
2. 〈v, u〉 = 〈u, v〉∗,
3. 〈u, u〉 ≥ 0 (positive) and if 〈u, u〉 = 0 then u = 0.

→ A-valued absolute value |u| := 〈u, u〉1/2 → Norm ‖u‖ := ‖ 〈u, u〉 ‖1/2A

Hilbert C∗-module M3: complete A-module equipped with an A-valued
inner-product

3Lance, Cambridge University Press, 1995.
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Advantages of RKHM (functional data)
x
2
(t
)

t

x
1
(t
)

t

Compute the
inner product

〈x1, x2〉H ∈ C

Degenerates information
along t

x1,x2 : Functional data
x1, x2 ∈ H

Algorithms in RKHS

x
2
(t
)

t

x
1
(t
)

t

t0 t1 t2 t3 t4 t5 t6 t7

c0 c1 c2 c3 c4 c5 c6 c7

ci = 〈x1(ti), x2(ti)〉X ∈ C

Fails to capture
continuous behavior

(derivatives, total variation,
frequency components,...)

x1(t), x2(t) ∈ C

x
2
(t
)

t

x
1
(t
)

t

〈x
1
,x

2
〉(
t)

t

〈x1, x2〉M ∈ A

Capture and control
continuous behavior

Algorithms in RKHM

x1, x2 ∈ M
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Advantages of RKHM

• Enlarge representation spaces using C∗-algebras (e.g. use the
C∗-algebra of continuous functions for functional data).

• Make use of the product structure.
e.g. polynomial kernel k(x, y) = x∗y + x∗x∗yy (x, y ∈ A1 or A2)

• Use the operator norm to alleviate the dependency of the error on
data dimension. (Explain later!)
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Review of reproducing kernel Hilbert C∗-module

A: C∗-algebra

RKHS (Hk):
• C-valued positive definite kernel k
• C-valued functions
• C-valued inner product

RKHM over A (Mk):
• A-valued positive definite kernel k
• A-valued functions
• A-valued inner product
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Reproducing kernel Hilbert C∗-module (RKHM)

Let X be a set. A map k : X × X → A is called an A-valued positive
definite kernel if it satisfies:

1. k(x, y) = k(y, x)∗ for x, y ∈ X and
2.

∑n
t,s=1 c

∗
tk(xt, xs)cs ≥ 0 for n ∈ N, c1, . . . , cn ∈ A, x1, . . . , xn ∈ X .

ϕ(x) := k(·, x) (ϕ : X → AX : feature map associated with k),

Mk,0 :=
{∑n

t=1 ϕ(xt)ct
∣∣ n ∈ N, ct ∈ A, xt ∈ X

}
. (3)

We can define an A-valued inner product 〈·, ·〉k : Mk,0 ×Mk,0 → A as〈∑n
s=1 ϕ(xs)cs,

∑l
t=1 ϕ(yt)dt

〉
k
:=

∑n
s=1

∑l
t=1 c

∗
sk(xs, yt)dt. (4)

Reproducing property: 〈ϕ(x), v〉k = v(x) for v ∈ Mk and x ∈ X
RKHM Mk: completion of Mk,0
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Orthonormality in Hilbert C∗-modules

To project a vector onto a finitely generated submodule, we introduce
orthonormality.

Definition 3 Orthonormal
Let M be a Hilbert C∗-module.

1. A vector q ∈ M is said to be normalized if 0 6= 〈q, q〉 = 〈q, q〉2.
2. Two vectors p, q ∈ M are said to be orthogonal if 〈p, q〉 = 0.

Theorem 2 Minimization property
Let A be a unital C∗-algebra and let I be a finite index set. Let V be the
module spanned by an orthonormal system {qi}i∈I and let P : M → V be
the projection operator. For w ∈ M,

Pw = argmin
v∈V

|w − v|2 (5)

RKHM for data analysis Yuka Hashimoto 15 / 31
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Orthonormality in Hilbert C∗-modules (Proof)

Key point of the proof:
If I is finite, we can construct a projection onto V .

Proof:
For w ∈ M, define

Pw =
∑
i∈I

qi 〈qi, w〉M . (6)

P : M → M is the orthogonal projection onto V .
(Note: If I is infinite, the convergence is the strong convergence.)
Let w ∈ M. For any v ∈ V , we have

|w − v|2M = |Pw + (I − P )w − v|2M
= |Pw − v|2M + |(I − P )w|2M ≥ |w − Pw|2M. (7)

Thus, we have |w − v|M ≥ |w − Pw|M.
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Orthonormality in Hilbert C∗-modules (Proof)

Assume v ∈ V satisfies |w − v|M = |w − Pw|M. Since v = Pv and
〈w,Pw〉 = 〈w,PPw〉 = 〈Pw,Pw〉, we have

|w − v|2M = 〈w − v, w − v〉M
= 〈w,w〉M − 〈w, v〉M − 〈v, w〉M + 〈v, v〉M
= 〈w,w〉M − 〈w,Pv〉M − 〈Pv,w〉M + 〈v, v〉M , (8)

|w − Pw|2M = 〈w − Pw,w − Pw〉M
= 〈w,w〉 − 〈w,Pw〉 − 〈Pw,w〉+ 〈Pw,Pw〉
= 〈w,w〉 − 〈Pw,Pw〉 − 〈Pw,Pw〉+ 〈Pw,Pw〉 . (9)

Thus, we have

〈w,w〉M − 〈Pw,Pw〉M = 〈w,w〉M − 〈Pw, v〉M − 〈v, Pw〉M + 〈v, v〉M .

Therefore, we have |Pw − v|2M = 0, which shows Pw = v.
RKHM for data analysis Yuka Hashimoto 17 / 31



Gram–Schmidt orthonormalization in Hilbert C∗-modules

A: von Neumann-algebra

Proposition 1 Normalization
Let ϵ > 0 and let q̂ ∈ M be a vector satisfying ‖q̂‖M > ϵ. Then there
exists b̂ ∈ A such that ‖b̂‖A < 1/ϵ and q := q̂b̂ is normalized. Moreover,
there exists b ∈ A such that ‖q̂ − qb‖M ≤ ϵ.

Proposition 2 Gram–Schmidt orthonormalization
Let {wi}∞i=1 be a sequence in M. For i = 1, 2, . . . and ϵ > 0, let

q̂j = wj −
j−1∑
i=1

qi 〈qi, wj〉M , qj = q̂j b̂j if ‖q̂j‖M > ϵ, (10)

qj = 0 otherwise. (11)

Here, b̂j is defined in the same manner as b̂ in Proposition 1 by replacing q̂
by q̂j . Then {qj}∞j=1 is an orthonormal system of M. Moreover, any wj is
in the ϵ-neighborhood of the module generated by {qj}∞j=1.
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Gram–Schmidt orthonormalization (Proof)

Key point of the proof:
If A is a von Neumann-algebra, we can apply the spectral decomposition.

Proof (Normalization):
a := 〈q̂, q̂〉M, σ(a): spectrum of a
a =

∫
λ∈σ(a) λdE(λ): spectral decomposition of a

b̂ :=
∫
λ∈σ(a)\Bϵ2 (0)

λ−1/2dE(λ) ∈ A, Bϵ(0) := {z ∈ C | |z| ≤ ϵ}
We have ‖b̂‖A < 1/ϵ and

〈q̂b̂, q̂b̂〉M = b̂∗ab̂ =

∫
λ∈σ(a)\Bϵ2 (0)

dE(λ).

Thus, 〈q̂b̂, q̂b̂〉M is a nonzero orthogonal projection.
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Gram–Schmidt orthonormalization (Proof)

b :=
∫
λ∈σ(a)\Bϵ2 (0)

λ1/2dE(λ)

Since b̂b =
∫
λ∈σ(a)\Bϵ2 (0)

dE(λ), we have

〈q̂, q̂b̂b〉 = 〈q̂, q̂〉b̂b = ab̂b = b̂bab̂b = 〈q̂b̂b, q̂b̂b〉 (12)

and obtain

〈q̂ − qb, q̂ − qb〉M = 〈q̂ − q̂b̂b, q̂ − q̂b̂b〉M = 〈q̂, q̂〉 − 〈q̂, q̂b̂b〉M

= a(1A − b̂b) =

∫
λ∈Bϵ2 (0)

λdE(λ). (13)

Thus, we have ‖q̂ − qb‖M ≤ ϵ.
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Representer theorem in RKHMs

To generalize complex-valued supervised problems to A-valued ones, we
show a representer theorem.

Mk: RKHM over A, | · |k: absolute value in Mk

A+ := {a ∈ A | ∃b ∈ A such that a = b∗b}

Theorem 3 Representer theorem in RKHMs
Let A be a unital C∗-algebra, x1, . . . , xn ∈ X and a1, . . . , an ∈ A. Let
h : X ×A2 → A+ be an error function and g : A+ → A+ satisfy
g(c) < g(d) for c < d. If SpanA{ϕ(xi)}ni=1 is closed, any w ∈ Mk

minimizing f(w) :=
∑n

i=1 h(xi, ai, w(xi)) + g(|w|k) admits a
representation of the form

∑n
i=1 ϕ(xi)ci for some c1, . . . , cn ∈ A.

Key point of the proof:
For a Hilbert C∗-module M over a unital C∗-algebra A and any finitely
generated closed submodule V of M, w ∈ M is decomposed into
w = w1 + w2 where w1 ∈ V and w2 ∈ V⊥.
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Approximate representer theorem in RKHMs

If A is a von Neumann algebra, we can show an approximate representer
theorem under mild conditions.

Theorem 4 Approximate representer theorem in RKHMs
Let A be a von Neumann-algebra, x1, . . . , xn ∈ X and a1, . . . , an ∈ A.
Let h : X ×A2 → A+ be a Lipschitz continuous error function with
Lipschitz constant L and g : A+ → A+ satisfy g(c) < g(d) for c < d.
Assume f(w) :=

∑n
i=1 h(xi, ai, w(xi)) + g(|w|k) has a minimizer w. Then,

for any ϵ > 0, there exists v ∈ Mk of the form
∑n

i=1 ϕ(xi)ci such that
‖f(v)− f(w)‖A ≤ Lnϵ‖w‖A.

Key point of the proof:
If A is a von Neumann-algebra, we can apply the Gram–Schmidt
orthonormalization to construct a module approximating the module
generated by {ϕ(xi)}ni=1.
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Background: Deep learning with kernels

Combine the flexibility of deep neural networks with the representation
power and solid theoretical understanding of kernel methods.

kj : Rdj×dj -valued positive definite kernel
Hj : vvRKHS a.w. kj
Gj = {f ∈ Hj | ‖f‖Hj ≤ Bj} (j = 1, . . . , L)
Gdeep
L = {fL ◦ · · · ◦ f1 | fj ∈ Gj (j = 1, . . . , L)}

Deep RKHS : f = f1 ◦ · · · ◦ fL (14)
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Background: Perron–Frobenius operator on RKHM

f : X → Y : nonlinear map
M1, M2 : RKHMs on X and Y associated with feature maps ϕ1 and ϕ2

The Perron–Frobenius operator Pf : M1 → M2 is an A-linear operator
satisfying

Pfϕ1(x) = ϕ2(f(x)). (15)

Remark
For the well-definedness of Pf , {ϕ1(x) | x ∈ X} should be A-linearly
independent.
(e.g. If k = k̃I with a “good” C-valued positive definite kernel k̃, the above
condition is satisfied.)
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Deep RKHM

A = Cd×d, Aj : C∗-subalgebra of A (j = 0, . . . , L)
kj : Aj-valued positive definite kernel
Mj : RKHM a.w. kj (j = 1, . . . , L)
Fj = {f ∈ Mj | ‖Pf‖ ≤ Bj} (j = 1, . . . , L− 1)
FL = {f ∈ ML | ‖f‖ML

≤ BL}
Fdeep
L = {fL ◦ · · · ◦ f1 | fj ∈ Fj (j = 1, . . . , L)}

Deep RKHM : f = fL ◦ · · · ◦ f1 ∈ Fdeep
L (16)

Using the Perron–Frobenius operators and the reproducing property,

f(x) = 〈ϕL(fL−1 ◦ · · · ◦ f1(x)), fL〉ML

=
〈
PfL−1

· · ·Pf1ϕL(x), fL
〉
ML

(17)
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Generalization bound with the operator norm

G(F) := {(x, y) 7→ f(x)− y | f ∈ F , ‖y‖A ≤ E}, n : number of samples

Theorem (Generalization bound)

Assume ∃D > 0 s.t. ‖kL(x, x)‖A ≤ D for any x ∈ AL−1. Let
K̃ = 4

√
2(
√
DBL + E)B1 · · ·BL (B1, . . . , BL−1: norms of the

Perron–Frobenius operators) and M̃ = 6(
√
DBL + E)2. Then, for any

g ∈ G(Fdeep
L ) and any δ ∈ (0, 1), with probability ≥ δ,

‖E[|g(x, y)|2A]‖A

≤
∥∥∥ 1
n

n∑
i=1

|g(xi, yi)|2A
∥∥∥
A
+

K̃

n

( n∑
i=1

tr k1(xi, xi)
)1/2

+ M̃

√
log(2/δ)

2n
. (18)

• Fix p ∈ Rd and upperbound ‖E[|g(x, y)|2A]1/2p‖ using the Rademacher
complexity for vector-valued function spaces.

• Represent f(x) =
〈
PfL−1

· · ·Pf1ϕL(x), fL
〉
ML

and derive the product
of the norms of the Perron–Frobenius operators.
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Comparison with vvRKHS

We can also flatten the matrices in A = Cd×d and regard them as
d2-dimensional vectors.
→ Use vvRKHS to represent d2-dimensional vector-valued functions.

In this case, the generalization bound is

E[‖g(x, y)‖2HS]

≤ 1

n

n∑
i=1

‖g(xi, yi)‖2HS +
K̃

n

(
d

n∑
i=1

tr k1(xi, xi)
)1/2

+ M̃

√
log(2/δ)

2n
. (19)

The operator norm alleviates the dependency of the generalization error on
the output dimension.
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Learning deep RKHM

x1, . . . , xn : input training data
y1, . . . , yn : output training data
Consider a minimization problem :

min
fj∈Mj

∥∥∥∥ 1n
n∑

i=1

|fL ◦ · · · ◦ f1(xi)− yi|2A
∥∥∥∥
A
+ λ1‖PfL−1

· · ·Pf1 |Ṽ(x)‖

+ λ2‖fL‖ML
, (20)

where Ṽ(x) is the Hilbert A-module generated by ϕ1(x1), . . . , ϕ1(xn).

Proposition (Representer theorem)

A solution of the problem (20) is represented as fj =
∑n

i=1 ϕ(x
j−1
i )ci,j for

some ci,j ∈ Aj , where xji = fj ◦ · · · ◦ f1(xi).
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Connection with benign overfitting

Gj ∈ An×n : Gram matrix whose (i, l)-entry is kj(x
j−1
i , xj−1

l ).

Proposition
We have

‖PfL−1
· · ·Pf1 |Ṽ(x)‖ = ‖R∗

LGLR1‖ ≤ ‖G−1
L ‖1/2‖GL‖‖G−1

1 ‖1/2. (21)

To bound the norm of the Perron–Frobenius operator, we try to reduce
‖G−1

L ‖1/2‖GL‖.
→ Try to get the largest and the smallest eigenvalues of GL closer.
→ According to the theory of overfitting for kernel regression4, deep

RKHM appreciates benign overfitting.

Benign overfitting: Networks predict well, even with a perfect fit to noisy
training data. (Both training and test error decrease.)

4Mallinar et al., NeurIPS 2022
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Numerical results

Classification task with MNIST with (λ1 = 1) and without (λ1 = 0) the
Perron–Frobenius regularization, d = 28, n = 20, L = 2
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Conclusion

• RKHM is a natural generalization of RKHS.

• We investigated properties related to the orthonormality in Hilbert
C∗-modules.

• We showed a representer theorem and an approximate representer
theorem in RKHMs and defined a kernel mean embedding in RKHMs.

• RKHMs are useful for analyzing image data and functional data.

• We proposed deep RKHM. We applied Perron–Frobenius operators
and the operator norm to derive a generalization bound.
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