Reproducing kernel Hilbert C*-module for data analysis

Yuka Hashimoto

NTT / RIKEN AIP

March 25th, 2024

- Y. Hashimoto, I. Ishikawa, M. Ikeda, F. Komura, T. Katsura, and Y. Kawahara, JMLR, 22(267):1–56. (updated version : arXiv:2101.11410v2)
- Y. Hashimoto, F. Komura, and M. Ikeda, Matrix and Operator Equations, pp. 1-27.
- Y. Hashimoto, M. Ikeda, and H. Kadri, NeurIPS 2023.

Yuka Hashimoto

NTT / RIKEN AIP

- 2018-2023 Researcher at NTT Network Service Systems Laboratories
- 2022 Received Ph.D. from Keio University
- 2022- Visiting researcher at RIKEN AIP
- 2023- Distinguished researcher at NTT Network Service Systems Laboratories / NTT Communication Science Laboratories

Backgrounds / Interests

- Operator theoretic data analysis
- Kernel methods, neural networks
- Numerical linear algebra

1. Motivation and Background

2. Reproducing kernel Hilbert C^* -module (RKHM)

- 2.1 Definition of RKHM
- 2.2 Theories for applying RKHM to data analysis

3. Applications

3.1 Deep learning with RKHM

4. Conclusion

Background: Kernel methods

Advantages of RKHS

- Nonlinearity in the original space is transformed into a linear one.
- We can compute inner products in RKHS exactly by computers.

¹Schölkopf and Smola, MIT Press, Cambridge, 2001

Background: Reproducing kernel Hilbert space (RKHS)

Let \mathcal{X} be a set. A map $k : \mathcal{X} \times \mathcal{X} \to \mathbb{C}$ is called a positive definite kernel if it satisfies:

1.
$$k(x,y) = \overline{k(y,x)}$$
 for $x, y \in \mathcal{X}$ and
2. $\sum_{t,s=1}^{n} \overline{c_t} k(x_t, x_s) c_s \ge 0$ for $n \in \mathbb{N}$, $c_1, \ldots, c_n \in \mathbb{C}$, $x_1, \ldots, x_n \in \mathcal{X}$.

 $\phi(x):=k(\cdot,x) \ (\phi:\mathcal{X}\to\mathbb{C}^{\mathcal{X}}: \text{ feature map associated with } k),$

$$\mathcal{H}_{k,0} := \left\{ \left| \sum_{t=1}^{n} \phi(x_t) c_t \right| \; n \in \mathbb{N}, \; c_t \in \mathbb{C}, \; x_t \in \mathcal{X} \right\}.$$
(1)

We can define an inner product $\langle \cdot, \cdot \rangle_k : \mathcal{H}_{k,0} \times \mathcal{H}_{k,0} \to \mathbb{C}$ as

$$\left\langle \sum_{s=1}^{n} \phi(x_s) c_s, \sum_{t=1}^{l} \phi(y_t) d_t \right\rangle_k := \sum_{s=1}^{n} \sum_{t=1}^{l} \overline{c_s} k(x_s, y_t) d_t.$$
(2)

Reproducing property: $\langle \phi(x), v \rangle_k = v(x)$ for $v \in \mathcal{H}_k$ and $x \in \mathcal{X}$

RKHS \mathcal{H}_k : completion of $\mathcal{H}_{k,0}$

Background: Representer theorem in RKHSs

The representer theorem guarantees that solutions of a minimization problem are represented only with given samples².

 \mathcal{H}_k : RKHS

 $\mathbb{R}_+ := \{ a \in \mathbb{R} \mid a \ge 0 \}$

Theorem 1 Representer theorem in RKHSs

Let $x_1, \ldots, x_n \in \mathcal{X}$ and $a_1, \ldots, a_n \in \mathbb{C}$. Let $h : \mathcal{X} \times \mathbb{C}^2 \to \mathbb{R}_+$ be an error function and $g : \mathbb{R}_+ \to \mathbb{R}_+$ satisfy g(c) < g(d) for c < d. Then, any $u \in \mathcal{H}_k$ minimizing $\sum_{i=1}^n h(x_i, a_i, u(x_i)) + g(||u||_k)$ admits a representation of the form $\sum_{i=1}^n \phi(x_i)c_i$ for some $c_1, \ldots, c_n \in \mathbb{C}$.

The result can be applied to supervised problems.

²Schölkopf et al., COLT 2001.

Goal: Generalization of data analysis in RKHS to RKHM

• C*-algebra-valued inner products extract information of structures.

We constructed a framework of data analysis with RKHM.

- We can reconstruct existing RKHSs by using RKHMs.
- We have shown fundamental properties for data analysis in RKHMs (e.g. representer theorem, kernel mean embedding).

$C^{\ast}\mbox{-algebra}$ and von Neumann-algebra

 $C^{*}\mbox{-algebra}$: Banach space equipped with a product & an involution * $$+$C^{*}\mbox{-property}$$

e.g.

- $C(\mathcal{Z})$ for a compact space \mathcal{Z} Norm : sup norm, Product : pointwise product, Involution : pointwise complex conjugate
- *K*(*H*) = {compact operators on a Hilbert space *H*}
 Norm : operator norm, Product : composition, Involution : adjoint

Von Neumann-algebra : C^* -algebra that is closed in the strong operator topology

e.g.

- $L^\infty(\mathcal{Z})$ for a measure space \mathcal{Z}
- $\mathcal{B}(\mathcal{H}) = \{ \text{bounded linear operators on a Hilbert space } \mathcal{H} \}$

For optimization, we need the notion of "positive" and order.

 \mathcal{A} : C^* -algebra

Definition 1 Positive

Let $a \in \mathcal{A}$. If $a = b^*b$ for some $b \in \mathcal{A}$, then a is called positive. We put $\mathcal{A}_+ = \{a \in \mathcal{A} \mid a \text{ is positive}\}.$

We can define a (partial) order $\leq_{\mathcal{A}}$ in \mathcal{A} by " $a \leq_{\mathcal{A}} b$ if and only if b - a is positive".

We denote a < A b if b - a is positive and not zero.

We consider supremum, maximum, infimum, and minimum in \mathcal{A} with respect to the order $\leq_{\mathcal{A}}$.

\mathcal{A} : C^* -algebra

 \mathcal{M} : right \mathcal{A} -module ($u \in \mathcal{M}$, $c \in \mathcal{A} \rightarrow uc \in \mathcal{M}$)

Definition 2 *A*-valued inner product

A map $\langle \cdot, \cdot \rangle : \mathcal{M} \times \mathcal{M} \to \mathcal{A}$ is called an \mathcal{A} -valued inner product if it satisfies the following properties for $u, v, w \in \mathcal{M}$ and $c, d \in \mathcal{A}$:

1.
$$\langle u, vc + wd \rangle = \langle u, v \rangle c + \langle u, w \rangle d$$
,

2.
$$\langle v, u \rangle = \langle u, v \rangle^*$$
,

3.
$$\langle u, u \rangle \ge 0$$
 (positive) and if $\langle u, u \rangle = 0$ then $u = 0$.

 $\rightarrow \mathcal{A}$ -valued absolute value $|u| := \langle u, u \rangle^{1/2} \rightarrow \text{Norm } ||u|| := ||\langle u, u \rangle ||_{\mathcal{A}}^{1/2}$

Hilbert C^* -module \mathcal{M}^3 : complete \mathcal{A} -module equipped with an \mathcal{A} -valued inner-product

³Lance, Cambridge University Press, 1995.

Advantages of RKHM (functional data)

Algorithms in RKHS

Algorithms in RKHM

Advantages of RKHM

• Enlarge representation spaces using C^* -algebras (e.g. use the C^* -algebra of continuous functions for functional data).

- Make use of the product structure. <u>e.g.</u> polynomial kernel $k(x, y) = x^*y + x^*x^*yy$ $(x, y \in A_1 \text{ or } A_2)$
- Use the operator norm to alleviate the dependency of the error on data dimension. (Explain later!)

Review of reproducing kernel Hilbert C^* -module

 \mathcal{A} : C^* -algebra

RKHS (\mathcal{H}_k) :

- \mathbb{C} -valued positive definite kernel k
- C-valued functions
- C-valued inner product

RKHM over $\mathcal{A}(\mathcal{M}_k)$:

- \mathcal{A} -valued positive definite kernel k
- *A*-valued functions
- *A*-valued inner product

Reproducing kernel Hilbert C^* -module (RKHM)

Let \mathcal{X} be a set. A map $k : \mathcal{X} \times \mathcal{X} \to \mathcal{A}$ is called an \mathcal{A} -valued positive definite kernel if it satisfies:

1.
$$k(x,y) = k(y,x)^*$$
 for $x, y \in \mathcal{X}$ and
2. $\sum_{t,s=1}^n c_t^* k(x_t, x_s) c_s \ge 0$ for $n \in \mathbb{N}$, $c_1, \ldots, c_n \in \mathcal{A}$, $x_1, \ldots, x_n \in \mathcal{X}$.

 $\phi(x):=k(\cdot,x) \ (\phi:\mathcal{X}\to\mathcal{A}^{\mathcal{X}}: \text{ feature map associated with }k)\text{,}$

$$\mathcal{M}_{k,0} := \left\{ \sum_{t=1}^{n} \phi(x_t) c_t \middle| n \in \mathbb{N}, \ c_t \in \mathcal{A}, \ x_t \in \mathcal{X} \right\}.$$
(3)

We can define an \mathcal{A} -valued inner product $\langle \cdot, \cdot \rangle_k : \mathcal{M}_{k,0} \times \mathcal{M}_{k,0} \to \mathcal{A}$ as

$$\left\langle \sum_{s=1}^{n} \phi(x_s) c_s, \sum_{t=1}^{l} \phi(y_t) d_t \right\rangle_k := \sum_{s=1}^{n} \sum_{t=1}^{l} c_s^* k(x_s, y_t) d_t.$$
 (4)

Reproducing property: $\langle \phi(x), v \rangle_k = v(x)$ for $v \in \mathcal{M}_k$ and $x \in \mathcal{X}$

RKHM \mathcal{M}_k : completion of $\mathcal{M}_{k,0}$

To project a vector onto a finitely generated submodule, we introduce orthonormality.

Definition 3 Orthonormal

Let \mathcal{M} be a Hilbert C^* -module.

- 1. A vector $q \in \mathcal{M}$ is said to be normalized if $0 \neq \langle q, q \rangle = \langle q, q \rangle^2$.
- 2. Two vectors $p, q \in \mathcal{M}$ are said to be orthogonal if $\langle p, q \rangle = 0$.

Theorem 2 Minimization property

Let \mathcal{A} be a unital C^* -algebra and let \mathcal{I} be a finite index set. Let \mathcal{V} be the module spanned by an orthonormal system $\{q_i\}_{i\in\mathcal{I}}$ and let $P: \mathcal{M} \to \mathcal{V}$ be the projection operator. For $w \in \mathcal{M}$,

Orthonormality in Hilbert C^* -modules (Proof)

Key point of the proof:

If ${\mathcal I}$ is finite, we can construct a projection onto ${\mathcal V}.$

Proof:

For $w \in \mathcal{M}$, define

$$Pw = \sum_{i \in \mathcal{I}} q_i \langle q_i, w \rangle_{\mathcal{M}} \,. \tag{6}$$

 $P: \mathcal{M} \to \mathcal{M}$ is the orthogonal projection onto \mathcal{V} . (Note: If \mathcal{I} is infinite, the convergence is the strong convergence.) Let $w \in \mathcal{M}$. For any $v \in \mathcal{V}$, we have

$$|w - v|_{\mathcal{M}}^{2} = |Pw + (I - P)w - v|_{\mathcal{M}}^{2}$$

= $|Pw - v|_{\mathcal{M}}^{2} + |(I - P)w|_{\mathcal{M}}^{2} \ge |w - Pw|_{\mathcal{M}}^{2}.$ (7)

Thus, we have $|w - v|_{\mathcal{M}} \ge |w - Pw|_{\mathcal{M}}$.

Orthonormality in Hilbert C^* -modules (Proof)

Assume $v \in \mathcal{V}$ satisfies $|w - v|_{\mathcal{M}} = |w - Pw|_{\mathcal{M}}$. Since v = Pv and $\langle w, Pw \rangle = \langle w, PPw \rangle = \langle Pw, Pw \rangle$, we have

$$|w - v|_{\mathcal{M}}^{2} = \langle w - v, w - v \rangle_{\mathcal{M}}$$

= $\langle w, w \rangle_{\mathcal{M}} - \langle w, v \rangle_{\mathcal{M}} - \langle v, w \rangle_{\mathcal{M}} + \langle v, v \rangle_{\mathcal{M}}$
= $\langle w, w \rangle_{\mathcal{M}} - \langle w, \mathbf{P}v \rangle_{\mathcal{M}} - \langle \mathbf{P}v, w \rangle_{\mathcal{M}} + \langle v, v \rangle_{\mathcal{M}}$, (8)

$$|w - Pw|_{\mathcal{M}}^{2} = \langle w - Pw, w - Pw \rangle_{\mathcal{M}}$$

= $\langle w, w \rangle - \langle w, Pw \rangle - \langle Pw, w \rangle + \langle Pw, Pw \rangle$
= $\langle w, w \rangle - \langle Pw, Pw \rangle - \langle Pw, Pw \rangle + \langle Pw, Pw \rangle$. (9)

Thus, we have

$$\langle w, w \rangle_{\mathcal{M}} - \langle Pw, Pw \rangle_{\mathcal{M}} = \langle w, w \rangle_{\mathcal{M}} - \langle Pw, v \rangle_{\mathcal{M}} - \langle v, Pw \rangle_{\mathcal{M}} + \langle v, v \rangle_{\mathcal{M}}.$$

Therefore, we have $|Pw - v|_{\mathcal{M}}^2 = 0$, which shows Pw = v.

\mathcal{A} : von Neumann-algebra

Proposition 1 Normalization

Let $\epsilon > 0$ and let $\hat{q} \in \mathcal{M}$ be a vector satisfying $\|\hat{q}\|_{\mathcal{M}} > \epsilon$. Then there exists $\hat{b} \in \mathcal{A}$ such that $\|\hat{b}\|_{\mathcal{A}} < 1/\epsilon$ and $q := \hat{q}\hat{b}$ is normalized. Moreover, there exists $b \in \mathcal{A}$ such that $\|\hat{q} - qb\|_{\mathcal{M}} \leq \epsilon$.

Proposition 2 Gram-Schmidt orthonormalization

Let $\{w_i\}_{i=1}^{\infty}$ be a sequence in \mathcal{M} . For i = 1, 2, ... and $\epsilon > 0$, let $\hat{q}_j = w_j - \sum_{i=1}^{j-1} q_i \langle q_i, w_j \rangle_{\mathcal{M}}, \quad q_j = \hat{q}_j \hat{b}_j \quad \text{if } \|\hat{q}_j\|_{\mathcal{M}} > \epsilon,$ (10)

 $q_j = 0$ otherwise.

(11)

Here, \hat{b}_j is defined in the same manner as \hat{b} in Proposition 1 by replacing \hat{q} by \hat{q}_j . Then $\{q_j\}_{j=1}^{\infty}$ is an orthonormal system of \mathcal{M} . Moreover, any w_j is in the ϵ -neighborhood of the module generated by $\{q_j\}_{j=1}^{\infty}$.

Key point of the proof:

If $\ensuremath{\mathcal{A}}$ is a von Neumann-algebra, we can apply the spectral decomposition.

 $\begin{array}{l} \mbox{Proof (Normalization):} \\ a := \langle \hat{q}, \hat{q} \rangle_{\mathcal{M}}, \quad \sigma(a) \text{: spectrum of } a \\ a = \int_{\lambda \in \sigma(a)} \lambda \mathrm{d} E(\lambda) \text{: spectral decomposition of } a \\ \hat{b} := \int_{\lambda \in \sigma(a) \setminus B_{\epsilon^2}(0)} \lambda^{-1/2} \mathrm{d} E(\lambda) \in \mathcal{A}, \quad B_{\epsilon}(0) := \{ z \in \mathbb{C} \mid |z| \leq \epsilon \} \\ \mbox{We have } \| \hat{b} \|_{\mathcal{A}} < 1/\epsilon \text{ and} \\ \end{array}$

$$\langle \hat{q}\hat{b}, \hat{q}\hat{b} \rangle_{\mathcal{M}} = \hat{b}^* a \hat{b} = \int_{\lambda \in \sigma(a) \setminus B_{\epsilon^2}(0)} \mathrm{d}E(\lambda).$$

Thus, $\langle \hat{q}\hat{b},\hat{q}\hat{b}\rangle_{\mathcal{M}}$ is a nonzero orthogonal projection.

Gram-Schmidt orthonormalization (Proof)

$$\begin{aligned} b &:= \int_{\lambda \in \sigma(a) \setminus B_{\epsilon^2}(0)} \lambda^{1/2} dE(\lambda) \\ \text{Since } \hat{b}b &= \int_{\lambda \in \sigma(a) \setminus B_{\epsilon^2}(0)} dE(\lambda), \text{ we have} \\ &\left\langle \hat{q}, \hat{q}\hat{b}b \right\rangle = \langle \hat{q}, \hat{q} \rangle \hat{b}b = a\hat{b}b = \hat{b}ba\hat{b}b = \left\langle \hat{q}\hat{b}b, \hat{q}\hat{b}b \right\rangle \end{aligned}$$
(12)

and obtain

$$\langle \hat{q} - qb, \hat{q} - qb \rangle_{\mathcal{M}} = \langle \hat{q} - \hat{q}\hat{b}b, \hat{q} - \hat{q}\hat{b}b \rangle_{\mathcal{M}} = \langle \hat{q}, \hat{q} \rangle - \langle \hat{q}, \hat{q}\hat{b}b \rangle_{\mathcal{M}}$$
$$= a(1_{\mathcal{A}} - \hat{b}b) = \int_{\lambda \in B_{\epsilon^2}(0)} \lambda dE(\lambda).$$
(13)

Thus, we have $\|\hat{q} - qb\|_{\mathcal{M}} \leq \epsilon$.

To generalize complex-valued supervised problems to \mathcal{A} -valued ones, we show a representer theorem.

$$\begin{split} \mathcal{M}_k &: \mathsf{RKHM} \text{ over } \mathcal{A}, \ |\cdot|_k &: \text{ absolute value in } \mathcal{M}_k \\ \mathcal{A}_+ &:= \{ a \in \mathcal{A} \ | \ \exists b \in \mathcal{A} \text{ such that } a = b^*b \} \end{split}$$

Theorem 3 Representer theorem in RKHMs

Let \mathcal{A} be a unital C^* -algebra, $x_1, \ldots, x_n \in \mathcal{X}$ and $a_1, \ldots, a_n \in \mathcal{A}$. Let $h: \mathcal{X} \times \mathcal{A}^2 \to \mathcal{A}_+$ be an error function and $g: \mathcal{A}_+ \to \mathcal{A}_+$ satisfy g(c) < g(d) for c < d. If $\operatorname{Span}_{\mathcal{A}} \{\phi(x_i)\}_{i=1}^n$ is closed, any $w \in \mathcal{M}_k$ minimizing $f(w) := \sum_{i=1}^n h(x_i, a_i, w(x_i)) + g(|w|_k)$ admits a representation of the form $\sum_{i=1}^n \phi(x_i)c_i$ for some $c_1, \ldots, c_n \in \mathcal{A}$.

Key point of the proof:

For a Hilbert C^* -module \mathcal{M} over a unital C^* -algebra \mathcal{A} and any finitely generated closed submodule \mathcal{V} of \mathcal{M} , $w \in \mathcal{M}$ is decomposed into $w = w_1 + w_2$ where $w_1 \in \mathcal{V}$ and $w_2 \in \mathcal{V}^{\perp}$.

If ${\mathcal A}$ is a von Neumann algebra, we can show an approximate representer theorem under mild conditions.

Theorem 4 Approximate representer theorem in RKHMs

Let \mathcal{A} be a von Neumann-algebra, $x_1, \ldots, x_n \in \mathcal{X}$ and $a_1, \ldots, a_n \in \mathcal{A}$. Let $h: \mathcal{X} \times \mathcal{A}^2 \to \mathcal{A}_+$ be a Lipschitz continuous error function with Lipschitz constant L and $g: \mathcal{A}_+ \to \mathcal{A}_+$ satisfy g(c) < g(d) for c < d. Assume $f(w) := \sum_{i=1}^n h(x_i, a_i, w(x_i)) + g(|w|_k)$ has a minimizer w. Then, for any $\epsilon > 0$, there exists $v \in \mathcal{M}_k$ of the form $\sum_{i=1}^n \phi(x_i)c_i$ such that $\|f(v) - f(w)\|_{\mathcal{A}} \le Ln\epsilon \|w\|_{\mathcal{A}}$.

Key point of the proof:

If \mathcal{A} is a von Neumann-algebra, we can apply the Gram–Schmidt orthonormalization to construct a module approximating the module generated by $\{\phi(x_i)\}_{i=1}^n$.

Background: Deep learning with kernels

Combine the flexibility of deep neural networks with the representation power and solid theoretical understanding of kernel methods.

$$\begin{array}{l} k_j : \mathbb{R}^{d_j \times d_j} \text{-valued positive definite kernel} \\ \mathcal{H}_j : \text{vvRKHS a.w. } k_j \\ \mathcal{G}_j = \{f \in \mathcal{H}_j \mid \|f\|_{\mathcal{H}_j} \leq B_j\} \ (j = 1, \dots, L) \\ \mathcal{G}_L^{\text{deep}} = \{f_L \circ \cdots \circ f_1 \mid f_j \in \mathcal{G}_j \ (j = 1, \dots, L)\} \end{array}$$

Deep RKHS :
$$f = f_1 \circ \cdots \circ f_L$$
 (14)

Background: Perron-Frobenius operator on RKHM

 $f: \mathcal{X} \to \mathcal{Y}$: nonlinear map \mathcal{M}_1 , \mathcal{M}_2 : RKHMs on \mathcal{X} and \mathcal{Y} associated with feature maps ϕ_1 and ϕ_2

The Perron–Frobenius operator $P_f : \mathcal{M}_1 \to \mathcal{M}_2$ is an \mathcal{A} -linear operator satisfying

$$P_f \phi_1(x) = \phi_2(f(x)).$$
 (15)

<u>Remark</u>

For the well-definedness of P_f , $\{\phi_1(x) \mid x \in \mathcal{X}\}$ should be \mathcal{A} -linearly independent.

(e.g. If $k = \tilde{k}I$ with a "good" \mathbb{C} -valued positive definite kernel \tilde{k} , the above condition is satisfied.)

Deep RKHM

 $\mathcal{A} = \mathbb{C}^{d \times d}$, $\mathcal{A}_j : C^*$ -subalgebra of \mathcal{A} $(j = 0, \dots, L)$ k_i : \mathcal{A}_i -valued positive definite kernel \mathcal{M}_i : RKHM a.w. k_i $(j = 1, \ldots, L)$ $\mathcal{F}_{i} = \{f \in \mathcal{M}_{i} \mid ||P_{f}|| \leq B_{i}\} \ (j = 1, \dots, L-1)$ $\mathcal{F}_L = \{ f \in \mathcal{M}_L \mid \|f\|_{\mathcal{M}_L} < B_L \}$ $\mathcal{F}_{I}^{\text{deep}} = \{ f_{L} \circ \cdots \circ f_{1} \mid f_{j} \in \mathcal{F}_{j} \ (j = 1, \dots, L) \}$ Deep RKHM : $f = f_L \circ \cdots \circ f_1 \in \mathcal{F}_I^{\text{deep}}$ (16)Input $f_3 \in \mathcal{M}_3$ Output $f_1 \in \mathcal{M}_1$ $f_2 \in \mathcal{M}_2$ $f_4 \in \mathcal{M}_4$ An \mathcal{A}_1 A A \mathcal{A}_{4}

Using the Perron-Frobenius operators and the reproducing property,

$$\begin{aligned} f(x) &= \langle \phi_L(f_{L-1} \circ \cdots \circ f_1(x)), f_L \rangle_{\mathcal{M}_L} \\ &= \langle P_{f_{L-1}} \cdots P_{f_1} \phi_L(x), f_L \rangle_{\mathcal{M}_L} \end{aligned}$$
(17)

RKHM for data analysis

Yuka Hashimoto

25 / 31

Generalization bound with the operator norm

 $\mathcal{G}(\mathcal{F}):=\{(x,y)\mapsto f(x)-y\ |\ f\in\mathcal{F},\ \|y\|_{\mathcal{A}}\leq E\}\text{, }n: \text{ number of samples}$

Theorem (Generalization bound)

Assume $\exists D > 0$ s.t. $||k_L(x,x)||_{\mathcal{A}} \leq D$ for any $x \in \mathcal{A}_{L-1}$. Let $\tilde{K} = 4\sqrt{2}(\sqrt{D}B_L + E)B_1 \cdots B_L$ (B_1, \ldots, B_{L-1} : norms of the Perron–Frobenius operators) and $\tilde{M} = 6(\sqrt{D}B_L + E)^2$. Then, for any $g \in \mathcal{G}(\mathcal{F}_L^{\text{deep}})$ and any $\delta \in (0, 1)$, with probability $\geq \delta$,

$\|\mathbf{E}[|g(x,y)|_{\mathcal{A}}^{2}]\|_{\mathcal{A}} \leq \left\|\frac{1}{n}\sum_{i=1}^{n}|g(x_{i},y_{i})|_{\mathcal{A}}^{2}\right\|_{\mathcal{A}} + \frac{\tilde{K}}{n} \Big(\sum_{i=1}^{n}\operatorname{tr} k_{1}(x_{i},x_{i})\Big)^{1/2} + \tilde{M}\sqrt{\frac{\log(2/\delta)}{2n}}.$ (18)

• Fix $p \in \mathbb{R}^d$ and upperbound $||\mathbf{E}[|g(x, y)|^2_{\mathcal{A}}]^{1/2}p||$ using the Rademacher complexity for vector-valued function spaces.

• Represent $f(x) = \langle P_{f_{L-1}} \cdots P_{f_1} \phi_L(x), f_L \rangle_{\mathcal{M}_L}$ and derive the product of the norms of the Perron–Frobenius operators. RKHM for data analysis Yuka Hashimoto 26 / 31 We can also flatten the matrices in $\mathcal{A}=\mathbb{C}^{d\times d}$ and regard them as $d^2\text{-dimensional vectors.}$

 \rightarrow Use vvRKHS to represent $d^2\text{-dimensional}$ vector-valued functions.

In this case, the generalization bound is

$$E[\|g(x,y)\|_{\mathrm{HS}}^{2}] \leq \frac{1}{n} \sum_{i=1}^{n} \|g(x_{i},y_{i})\|_{\mathrm{HS}}^{2} + \frac{\tilde{K}}{n} \left(\frac{d}{2} \sum_{i=1}^{n} \operatorname{tr} k_{1}(x_{i},x_{i}) \right)^{1/2} + \tilde{M} \sqrt{\frac{\log(2/\delta)}{2n}}.$$
 (19)

The operator norm alleviates the dependency of the generalization error on the output dimension.

 x_1, \ldots, x_n : input training data y_1, \ldots, y_n : output training data Consider a minimization problem :

$$\min_{f_j \in \mathcal{M}_j} \left\| \frac{1}{n} \sum_{i=1}^n |f_L \circ \cdots \circ f_1(x_i) - y_i|_{\mathcal{A}}^2 \right\|_{\mathcal{A}} + \lambda_1 \|P_{f_{L-1}} \cdots P_{f_1}|_{\tilde{\mathcal{V}}(\mathbf{x})} \| + \lambda_2 \|f_L\|_{\mathcal{M}_L},$$
(20)

where $\tilde{\mathcal{V}}(\mathbf{x})$ is the Hilbert \mathcal{A} -module generated by $\phi_1(x_1), \ldots, \phi_1(x_n)$.

Proposition (Representer theorem)

A solution of the problem (20) is represented as $f_j = \sum_{i=1}^n \phi(x_i^{j-1})c_{i,j}$ for some $c_{i,j} \in \mathcal{A}_j$, where $x_i^j = f_j \circ \cdots \circ f_1(x_i)$.

Connection with benign overfitting

 $G_j \in \mathcal{A}^{n \times n}$: Gram matrix whose (i, l)-entry is $k_j(x_i^{j-1}, x_l^{j-1})$.

Proposition

We have

$$\|P_{f_{L-1}}\cdots P_{f_1}|_{\tilde{\mathcal{V}}(\mathbf{x})}\| = \|R_L^*G_LR_1\| \le \|G_L^{-1}\|^{1/2}\|G_L\|\|G_1^{-1}\|^{1/2}.$$
 (21)

To bound the norm of the Perron–Frobenius operator, we try to reduce $\|G_L^{-1}\|^{1/2}\|G_L\|$.

- \rightarrow Try to get the largest and the smallest eigenvalues of G_L closer.
- \rightarrow According to the theory of overfitting for kernel regression⁴, deep RKHM appreciates benign overfitting.

Benign overfitting: Networks predict well, even with a perfect fit to noisy training data. (Both training and test error decrease.)

⁴Mallinar et al., NeurIPS 2022

Numerical results

Classification task with MNIST with $(\lambda_1 = 1)$ and without $(\lambda_1 = 0)$ the Perron–Frobenius regularization, d = 28, n = 20, L = 2

RKHM for data analysis

- RKHM is a natural generalization of RKHS.
- We investigated properties related to the orthonormality in Hilbert C^* -modules.
- We showed a representer theorem and an approximate representer theorem in RKHMs and defined a kernel mean embedding in RKHMs.
- RKHMs are useful for analyzing image data and functional data.
- We proposed deep RKHM. We applied Perron–Frobenius operators and the operator norm to derive a generalization bound.