Reproducing kernel Hilbert C*-module
for data analysis

Yuka Hashimoto

NTT / RIKEN AIP

March 25th, 2024

e Y. Hashimoto, |. Ishikawa, M. lkeda, F. Komura, T. Katsura, and Y. Kawahara, JMLR,
22(267):1-56. (updated version : arXiv:2101.11410v2)

e Y. Hashimoto, F. Komura, and M. lkeda, Matrix and Operator Equations, pp. 1-27.

e Y. Hashimoto, M. lkeda, and H. Kadri, NeurlPS 2023.



Introduction

Yuka Hashimoto
NTT / RIKEN AIP

2018-2023 Researcher at NTT Network Service Systems Laboratories
2022 Received Ph.D. from Keio University
2022- Visiting researcher at RIKEN AIP

2023- Distinguished researcher at NTT Network Service Systems
Laboratories / NTT Communication Science Laboratories

Backgrounds / Interests
e Operator theoretic data analysis
e Kernel methods, neural networks

® Numerical linear algebra

RKHM for data analysis Yuka Hashimoto 2/31



Contents

1. Motivation and Background

2. Reproducing kernel Hilbert C*-module (RKHM)
2.1 Definition of RKHM
2.2 Theories for applying RKHM to data analysis

3. Applications
3.1 Deep learning with RKHM

4. Conclusion

RKHM for data analysis Yuka Hashimoto 3/31



Background: Kernel methods

Feature map ¢

*¢(z)
ple complex-valued function

(temperature, traffic amount,...)

X RKHS?

(Finite dimensional sp.) (Infinite dimensional Hilbert sp.)
Nonlinear e Linear
~'
o® o Kernel PCA, Kernel SVM

e Learning complex-valued functions

Advantages of RKHS
® Nonlinearity in the original space is transformed into a linear one.

® We can compute inner products in RKHS exactly by computers.

1Schélkopf and Smola, MIT Press, Cambridge, 2001
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Background: Reproducing kernel Hilbert space (RKHS)

Let X beaset. Amap k: X x X — C is called a positive definite kernel if
it satisfies:

1. k(x,y) = k(y,z) for z,y € X and
2. 228:1077{7(%,%)65 >0 forneN, c,...,cn €C, zq,...,2, € X.

¢(z) := k(-,7) (¢ : X — C¥: feature map associated with k),
Hio:={> 1 d(@)ct| n€N, ¢ €C, € X}, (1)
We can define an inner product (-,-), : Hpo X Hio — C as
<ZZ:1 ¢($s)037 Zfz:1 ¢(yt)dt>k = 22:1 Zfszl Fsk(xsa yt)dt- (2)

Reproducing property: (¢(x),v), = v(x) for v € Hy and z € X
’ RKHS #,: completion of /Hk,O‘
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Background: Representer theorem in RKHSs

The representer theorem guarantees that solutions of a minimization
problem are represented only with given samples?.

Hki RKHS
Riy:={a€R | a>0}

Theorem 1 Representer theorem in RKHSs

Let 21,...,2, € X and a1,...,a, € C. Let h: X x C> — R, be an error
function and g : Ry — Ry satisfy g(¢) < g(d) for ¢ < d. Then, any

u € Hy minimizing Y1, h(xi, a;, w(x;)) + g(JJul|x) admits a
representation of the form > | ¢(x;)c; for some ¢q,. .., ¢, € C.

The result can be applied to supervised problems.

2Scholkopf et al., COLT 2001.
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Goal: Generalization of data analysis in RKHS to RKHM

Feature map ¢ °¢(2)
ple C*-algebra-valued function
(function, image,...)
X RKHM
(Structured data sp.) (Infinite dimensional Hilbert C*-module)
Nonlinear Linear + C*-algebra-valued inner product

Advantages of RKHM:

e (C*-algebra-valued inner products extract information of structures.
We constructed a framework of data analysis with RKHM.

® \We can reconstruct existing RKHSs by using RKHMs.

® We have shown fundamental properties for data analysis in RKHMs
(e.g. representer theorem, kernel mean embedding).

RKHM for data analysis Yuka Hashimoto



C*-algebra and von Neumann-algebra

(C*-algebra : Banach space equipped with a product & an involution *
+ C*-property
€8
® C(Z2) for a compact space Z
Norm : sup norm, Product : pointwise product,
Involution : pointwise complex conjugate
® K(H) = {compact operators on a Hilbert space H}
Norm : operator norm, Product : composition, Involution : adjoint

Von Neumann-algebra : C*-algebra that is closed in the strong operator
topology
eg.
® L[°°(Z) for a measure space Z
® B(H) = {bounded linear operators on a Hilbert space H}
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Positivity and order in C*-algebras

For optimization, we need the notion of “positive” and order.

A: C*-algebra

Definition 1 Positive

Let a € A. If a = b*b for some b € A, then a is called positive. We put
AL ={a € A | ais positive}.

We can define a (partial) order < 4 in A by
“a <4 bif and only if b — a is positive".

We denote a < 4 b if b — a is positive and not zero.

We consider supremum, maximum, infimum, and minimum in A with
respect to the order < 4.
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Hilbert C*-module

A: C*-algebra
M: right A-module (u € M, c € A — uc € M)
Definition 2 A-valued inner product

A map (-,) : M x M — Ais called an A-valued inner product if it
satisfies the following properties for u,v,w € M and ¢,d € A:

1. (u,ve+ wd) = (u,v) c+ (u,w)d,
2. {v,u) = (u,v)",
3. (u,u) > 0 (positive) and if (u,u) =0 then u = 0.

— A-valued absolute value |u| := (u,u)"> — Norm |Ju := | (u,u) ||'{*

Hilbert C*-module M3: complete A-module equipped with an A-valued
inner-product

3Lance, Cambridge University Press, 1995.
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Advantages of RKHM (functional data)

Algorithms in RKHS Algorithms in RKHM
1,72 : Functional data
1,72 €H xl(t)azQ(t)e(c x1, 9 € M
= = =
t t
= =
S =
8 8
t th t1 to t3 tg t5 te b7 ¢ t
Compute the J J J J J J J J
inner product =
z (r1,22) g €A
Cp €1 C2 €3 €4 C5 CG C =
(@1,22)5 € C 0 C1 C2 €3 C4 C5 C6 C7 3
ci = (z1(ti), xa(ti)) € C &
Degenerates information Fails to capture .
along t continuous behavior
(derivatives, total variation, Capture and control
frequency components,...) continuous behavior
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Advantages of RKHM

e Enlarge representation spaces using C*-algebras (e.g. use the
C*-algebra of continuous functions for functional data).

— ¢

[ ]
$1(x)
RKHM over A,

U.
¢2(x)

b2
RKHM over A,
Ay, A, 1 C*-algebra

X

e Make use of the product structure.
e.g. polynomial kernel k(x,y) = z*y + z*2*yy (x,y € Ay or Aj)

e Use the operator norm to alleviate the dependency of the error on
data dimension. (Explain later!)
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Review of reproducing kernel Hilbert C*-module

A: C*-algebra

RKHS (Hg):
e (C-valued positive definite kernel k
e (C-valued functions

e (C-valued inner product

RKHM over A (My):
e A-valued positive definite kernel k
e A-valued functions

e A-valued inner product
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Reproducing kernel Hilbert C*-module (RKHM)

Let X beaset. Amapk: X x X — A is called an A-valued positive
definite kernel if it satisfies:

1. k(x,y) = k(y,z)* for x,y € X and
2. 228:1 cik(ze,z5)cs >0 formeN, ¢p,...,cn €A 21,...,0p € X.

() := k(-,z) (¢ : X — A%: feature map associated with k),
My = {Z?:l ¢(xt)ct‘ neN, €A, x; € X}. (3)
We can define an A-valued inner product (-,-), : Mg o X Myo— A as
(X0 d(@s)es, Ximy dWe)de), = Sty Yiy k(s ye)ds. (4)

Reproducing property: (¢(x),v), = v(x) for v € My and z € X
’ RKHM M;,: completion of My, o ‘
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Orthonormality in Hilbert C*-modules

To project a vector onto a finitely generated submodule, we introduce
orthonormality.

Definition 3 Orthonormal

Let M be a Hilbert C*-module.
1. A vector ¢ € M is said to be normalized if 0 # (q,q) = <q,q>2.
2. Two vectors p, g € M are said to be orthogonal if (p,¢) = 0.

Theorem 2 Minimization property

Let A be a unital C*-algebra and let Z be a finite index set. Let V be the
module spanned by an orthonormal system {¢; };c7 and let P : M — V be
the projection operator. For w € M,
w
Pw = argmin |w — v/? (5)
veY
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Orthonormality in Hilbert C*-modules (Proof)

Key point of the proof:
If Z is finite, we can construct a projection onto V.

Proof:
For w € M, define

Pw=">"gi{gi,w) - (6)
i€l
P: M — M is the orthogonal projection onto V.
(Note: If Z is infinite, the convergence is the strong convergence.)
Let w € M. For any v € V, we have

lw — v = |Pw+ (I — P)w —v|3y
= |Pw —v|3 + |(I — P)w|3; > |w — Pwliy,. (7)

Thus, we have |w — vy > |w — Pw| .
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Orthonormality in Hilbert C*-modules (Proof)

Assume v € V satisfies |w — v|pq = |w — Pw|aq. Since v = Pv and
(w, Pw) = (w, PPw) = (Pw, Pw), we have

lw—v} = (w—v,0—v),,
= (w,w) p — (W, v) o0 — (v, W)\ + (V,0) g
= (w,w) py — (w, Pv) \y — (Pv,w) o0 + (v,0) 0y (8)

lw — Pw|3, = (w — Pw,w — Pw) ,,
= (w,w) — (w, Pw) — (Pw,w) + {Pw, Pw)
= (w,w) — (Pw, Pw) — (Pw, Pw) + (Pw, Pw). (9)

Thus, we have

(w,w) py — (Pw, Pw) , = (w,w) p, — (Pw, )\ — (v, Pw) y( + (v,0) (-

Therefore, we have |Pw — v|3, = 0, which shows Pw = v.

RKHM for data analysis
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Gram=Schmidt orthonormalization in Hilbert C*-modules

A: von Neumann-algebra

Proposition 1 Normalization

Let € > 0 and let ¢ € M be a vector satisfying ||g|[ s > €. Then there
exists b € A such that ||b]|.4 < 1/e and ¢ := gb is normalized. Moreover,
there exists b € A such that ||G — ¢b||pm < e.

Proposition 2 Gram-Schmidt orthonormalization
Let {w;}°, be a sequence in M. Fori=1,2,... and € > 0, let

=S alaw) . G =db i lglu>e (10

i =0 otherwise. (11)

Here, b is deflned in the same manner as b in Proposition 1 by replacing ¢
by ¢;. Then {qj};";l is an orthonormal system of M. Moreover, any w; is
in the e-neighborhood of the module generated by {g;}72,
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Gram-Schmidt orthonormalization (Proof)

Key point of the proof:
If Ais a von Neumann-algebra, we can apply the spectral decomposition.

Proof (Normalization):
a:=(G,4) py» 0o(a): spectrum of a
a= f/\eg(a) AdFE(\): spectral decomposition of a

b= [reopamA PAEQ) € A, Be(0):={z€C | |z| < ¢}
We have [|b||.4 < 1/€ and

_ J dE(N).
A€o (a)\B.2(0)

Thus, (QZ), QZ;}M is a nonzero orthogonal projection.
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Gram-Schmidt orthonormalization (Proof)

b:= J‘f\EJ(a)\BEQ(O) AV2dE(N)
Since bb = I,\eo(a)\BEQ(o) dE()), we have
(G, Gbb) = (g, G)bb = abb = bbabb = (Gbb, Gbb) (12)
and obtain
(4 — ab, 4 — ab)pa = (G — dbb, G — @) pa = (4, @) — (4, GbD)

=a(ly—bb) = LGB o AE(N). (13)

Thus, we have || — gb||pm < €.
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Representer theorem in RKHMs

To generalize complex-valued supervised problems to A-valued ones, we
show a representer theorem.

My RKHM over A, | - |x: absolute value in My
Ay :={a€ A | 3be Asuch that a = b*b}

Theorem 3 Representer theorem in RKHMs

Let A be a unital C*-algebra, z1,...,2, € X and aq,...,a, € A. Let
h:X x A% — A, be an error function and g : A, — A, satisfy

g(c) < g(d) for ¢ < d. If Span 4{¢(z;)}"_, is closed, any w € My,
minimizing f(w) := > ;" h(xi, a;, w(z;)) + g(|wlx) admits a
representation of the form """ | ¢(z;)c; for some ¢y, ..., ¢, € A.

Key point of the proof:

For a Hilbert C*-module M over a unital C*-algebra A and any finitely
generated closed submodule V of M, w € M is decomposed into

w = wy + wy where wy € V and ws € V*.
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Approximate representer theorem in RKHMs

If Ais a von Neumann algebra, we can show an approximate representer
theorem under mild conditions.

Theorem 4 Approximate representer theorem in RKHMs

Let A be a von Neumann-algebra, z1,...,2, € X and ay,...,a, € A.
Let h: X x A? — A, be a Lipschitz continuous error function with
Lipschitz constant L and g : Ay — A, satisfy g(c) < g(d) for ¢ < d.
Assume f(w) =" | h(xi, ai, w(z;)) + g(|w|k) has a minimizer w. Then,
for any € > 0, there exists v € My, of the form Y " | ¢(x;)c; such that
1f(v) = f(w)lla < Lne||wl|.a-

Key point of the proof:

If A is a von Neumann-algebra, we can apply the Gram—Schmidt
orthonormalization to construct a module approximating the module
generated by {¢(x;)} ;.
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Background: Deep learning with kernels

Combine the flexibility of deep neural networks with the representation
power and solid theoretical understanding of kernel methods.

kj R% >4 _valued positive definite kernel

H; : wRKHS aw. k;

Gi={feM | IIfln, <Bj} (i=1,...,L)
deep ={fro---ofi| f;€G;(i=1,....,L)}

Deep RKHS : f = fio---0 fL (14)

Input - —~ ' s = = Output
f1 €My f2 €3, fa €3 fa €EHy
do dy
K R% Rz R% R
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Background: Perron—Frobenius operator on RKHM

f: X — Y : nonlinear map
My, Mgy : RKHMs on X and Y associated with feature maps ¢ and ¢o

The Perron-Frobenius operator Py : My — M is an A-linear operator
satisfying

Pr1(z) = ga(f(z)). (15)

Remark

For the well-definedness of Py, {¢1(x) | € X'} should be A-linearly
independent.

(eg. If k= kI with a “good” C-valued positive definite kernel %, the above
condition is satisfied.)
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Deep RKHM

A=C¥>d ~ A;: C*subalgebra of A (j =0,...,L)

kj : Aj-valued positive definite kernel

M, RKHM aw. kj (j =1,...,1L)

Fi={feM; | |Fl<Bj}(=1....,.L-1)

Fr=AfeMp | |[fllm, < B}
FirP={fro-ofil fiEF (G=1....0)}

Deep RKHM : f = fro---0 fy € Fucep (16)

Input Output
f15M1 szMz f3€M3 f4EM4

Using the Perron—Frobenius operators and the reproducing property,

f(@) =(or(fr-10-0 fi(2), fL)\,
= <PfL—l : Pfld)L fL>ML (17)
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Generalization bound with the operator norm

GF) ={(z,y)— fx)—y | f€F, |ly|la<E}, n: number of samples

Theorem (Generalization bound)

Assume 3D > 0s.t. ||kp(z,z)||4a < D forany z € Ar_1. Let

( = 4v2(VDBp + E)By -+ By (B, ..., Br_1: norms of the
Perron Frobenius operators) and M = 6(\/_BL + E)%. Then, for any
g € G(F¥P) and any § € (0,1), with probability > 4,

IEllg(z, ) 4]ll.a

< H%ilg(xi,ymi“ (Ztrk‘l i, Ti) )1/2 M log;ﬂ‘ (18)
i=1

n

* Fix p € R? and upperbound ||E[|g(z,y)|%]*/?p|| using the Rademacher
complexity for vector—valued function spaces
® Represent f(x <PfL L Pror(x fL>M and derive the product

of the norms of the Perron—Frobenius operators.
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Comparison with vwRKHS

We can also flatten the matrices in A = C?*? and regard them as
d?-dimensional vectors.
— Use wRKHS to represent d?-dimensional vector-valued functions.

In this case, the generalization bound is

E[llg(z,y)|ls)
12— [log(2/6
Z Hg xzayz HHS + — (dztr kl xumz ) + M % (19)

The operator norm alleviates the dependency of the generalization error on
the output dimension.

d — : La?

I d?-dimensional
d X d matrix vector
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Learning deep RKHM

z1,...,T, : input training data
Y1,---,Yn : output training data
Consider a minimization problem :

min
fieM;

1 n
n > lfro--o filw) — ?Ji|?4HA+ MU Pr_y - Prylpg
i=1
+ Aol fLllmy (20)

where V(x) is the Hilbert A-module generated by ¢1 (1), ..., ¢1(zn).

Proposition (Representer theorem)

A solution of the problem (20) is represented as f; = > " | qﬁ(a:g_l)ci,j for
some ¢; j € Aj, where 2] = fj0--- 0 fi(z).
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Connection with benign overfitting

Gj € A" : Gram matrix whose (i, [)-entry is kj(mg_l,x{_l).

Proposition
We have

1Pr, s -+ Prlppoll = IRLGLRA| < |G I2IGLINGT 2. (21)

To bound the norm of the Perron—Frobenius operator, we try to reduce

G HIM2IGL.

— Try to get the largest and the smallest eigenvalues of G, closer.

— According to the theory of overfitting for kernel regression*, deep
RKHM appreciates benign overfitting.

Benign overfitting: Networks predict well, even with a perfect fit to noisy
training data. (Both training and test error decrease.)

“Mallinar et al., NeurlPS 2022
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Numerical results

Classification task with MNIST with (A; = 1) and without (A\; = 0) the
Perron—Frobenius regularization, d = 28, n =20, L =2

0.6 .
o)
g 2
§0.5 ; S
< —— RKHM, A; =1 £
20.4 | —— RKHM, A; =0 F
F | — CNN

037 100 200 300 400

Epochs

0.3

Test Loss

0.2 i SEE
0 100 200 300 400
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Conclusion

® RKHM is a natural generalization of RKHS.

e \We investigated properties related to the orthonormality in Hilbert
C*-modules.

® \We showed a representer theorem and an approximate representer
theorem in RKHMs and defined a kernel mean embedding in RKHM .

¢ RKHMs are useful for analyzing image data and functional data.

® \We proposed deep RKHM. We applied Perron—Frobenius operators
and the operator norm to derive a generalization bound.
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