Adaptive Restore algorithm & Importance Monte Carlo

Christian P. Robert U. Paris Dauphine & Warwick U.

Workshop on Functional Inference and Machine Intelligence, U of Bristol

Ongoing 2023-2030 ERC funding for PhD and postdoctoral collaborations with

- Michael Jordan (Berkeley)
- Eric Moulines (Paris)
- ► Gareth O Roberts (Warwick)
- ▶ myself (Paris)

European Research Council

Part I: Adaptive Restore algorithm

Joint work with H McKimm, A Wang, M Pollock, and GO Roberts arXiv:2210.09901 - Bernoulli

Reversibility attached with (sub-efficient) random walk behaviour Recent achievements in non-reversible MCMC with PDMPs [Bouchard-Côté et al., 2018; Bierkens et al., 2019]

Link with regeneration

[Nummelin, 1978; Mykland et al., X, 1995]

At regeneration times, Markov chain starts again: future independent of past Scales poorly: regenerations recede exponentially with dimension

Reversibility attached with (sub-efficient) random walk behaviour Recent achievements in non-reversible MCMC with PDMPs [Bouchard-Côté et al., 2018; Bierkens et al., 2019]

Link with regeneration

[Nummelin, 1978; Mykland et al., X, 1995]

At regeneration times, Markov chain starts again: future independent of past Scales poorly: regenerations recede exponentially with dimension

Current (?) default workhorse: reversible MCMC methods (incl. NUTS)

[Hoffman & Gelman, 2014]

Non-reversible MCMC algorithms based on piecewise deterministic Markov processes (aka PDMP) perform well empirically

Non-reversible MCMC algorithms based on piecewise deterministic Markov processes (aka PDMP) perform well empirically

Quantitative convergence rates and variance now available

Physics origins

[Peters & De With, 2012; Krauth et al., 2009, 15, 16]

geometric ergodicity for exponentially decaying tail target

[Mesquita & Hespanha, 2010]

ergodicity targets on the real line

[Bierkens et al., 2016a,b]

Piecewise deterministic Markov process

PDMP sampler is a continuous-time, non-reversible, MCMC, method based on auxiliary variables

1. empirically state-of-the-art performances

[Bouchard et al., 2017]

2. exact subsampling for big data

[Bierkens et al., 2017]

3. geometric ergodicity for large class of distribution

[Deligiannidis et al., 2017]

4. Ability to deal with intractable potential $\log \pi(x) = \int U_{\omega}(x)\mu(d\omega)$

[Pakman et al., 2016]

Piecewise deterministic Markov process $\{z_t\in\mathcal{Z}\}_{t\in[0,\infty)},$ with three ingredients,

1. Deterministic dynamics: between events, deterministic evolution based on ODE

$$dz_t/dt = \Phi(z_t)$$

- 2. Event occurrence rate: $\lambda(t) = \lambda(z_t)$
- 3. Transition dynamics: At event time, τ , state prior to τ denoted by $z_{\tau-}$, and new state generated by $z_{\tau} \sim Q(\cdot|z_{\tau-})$. [Davis, 1984, 1993]

Main difficulties of implementing PDMP come from

- 1. Computing the ODE flow $\Psi:$ linear dynamic, quadratic dynamic
- 2. Simulating the inter-event time $\eta_k :$ many techniques of superposition and thinning for Poisson processes

[Devroye, 1986]

Simulation by superposition plus thinning

Most implementations thru discrete-time schemes by sampling Bernoulli $B(\alpha(z))$ For

$$\Phi(z) = (x + v\varepsilon, v)$$
 and $\alpha(z) = 1 \wedge \pi(x + v\varepsilon)/\pi(x)$

sampling inter-event time for strictly convex $\mathsf{U}(\cdot)$ obtained by solving

$$t^{\star} = \arg\min_t U(x + \nu t)$$

and additional randomization

- ► thinning: if there exists $\bar{\alpha}$ such that $\alpha(\Phi(z)) \geq \bar{\alpha}(x, k)$, accept-reject
- ▶ superposition and thinning: when $\alpha(z) = 1 \land \rho(\Phi(z)) / \rho(z)$ and $\rho(\cdot) = \prod_i \rho_i(\cdot)$ then $\bar{\alpha}(z, k) = \prod_i \bar{\alpha}_i(z, k)$

Restore process

Take $\{Y_t\}_{t\geq 0}$ diffusion / jump process on \mathbb{R}^d with infinitesimal generator L_Y and $Y_0\sim \mu$

Regeneration rate κ with associated tour length

$$\tau = \inf \left\{ t \geq 0 : \int_0^t \kappa(Y_s) \mathrm{d} s \geq \xi \right\} \ \mathrm{with} \ \ \xi \sim \mathsf{Exp}(1)$$

 $(\{Y_t^{(i)}\}_{t\geq 0},\tau^{(i)})_{i=0}^\infty$ iid realisations inducing regeneration times

$$T_j = \sum_{i=0}^{j-1} \tau^{(i)}$$

Restore process $\{X_t\}_{t \ge 0}$ given by:

$$X_t = \sum_{i=0}^\infty \mathbb{I}_{[T_i,T_{i+1})}(t) Y_{t-T_i}^{(i)}$$

Restore process

Path of five tours of Brownian Restore with $\pi \equiv \mathcal{N}(0, 1^2), \mu \equiv \mathcal{N}(0, 2^2)$ and C such that $\min_{x \in \mathbb{R}} \kappa(x) = 0$, with $\mathcal{K} = 200$ and $\Lambda_0 = 1000$. First and last output states shown by green dots and red crosses

Stationarity of Restore

Infinitesimal generator of $\{X_t\}_{t\geq 0}$

$$L_X f(x) = L_Y f(x) + \kappa(x) \int [f(y) - f(x)] \mu(y) \mathrm{d}y$$

with adjoint L_Y^{\dagger} Regeneration rate κ chosen as

$$\kappa(x) = L_Y^\dagger \pi(x) \big/ \pi(x) + C \mu(x) \big/ \pi(x)$$

Implies $\{X_t\}_{t \ge 0}$ is π -invariant

$$\int_{\mathbb{R}^d} \mathsf{L}_X \mathsf{f}(x) \pi(x) \mathrm{d} x = 0$$

Rewrite

$$\kappa(\mathbf{x}) = \frac{L_{Y}^{\dagger}\pi(\mathbf{x})}{\pi(\mathbf{x})} + C\frac{\mu(\mathbf{x})}{\pi(\mathbf{x})} = \tilde{\kappa}(\mathbf{x}) + C\frac{\mu(\mathbf{x})}{\pi(\mathbf{x})}$$

with

- $\blacktriangleright~\tilde{\kappa}$ partial regeneration rate
- \triangleright C > 0 regeneration constant and
- ► $C\mu$ regeneration measure, large enough for $\kappa(\cdot) > 0$

Resulting Monte Carlo method called Restore Sampler

[Wang et al., 2021]

Restore sampler convergence

Given π -invariance of $\{X_t\}_{t \ge 0}$, Monte Carlo validation follows:

$$\mathbb{E}_{\pi}[f] = \mathbb{E}_{X_{0} \sim \mu} \Big[\int_{0}^{\tau^{(0)}} f(X_{s}) \mathrm{d}x \Big] \Big/ \mathbb{E}_{X_{0} \sim \mu}[\tau^{(0)}] \tag{1}$$

and a.s. convergence of ergodic averages:

$$\frac{1}{t} \int_0^t f(X_s) \mathrm{d}s \to \mathbb{E}_{\pi}[f] \tag{2}$$

For iid
$$Z_i := \int_{T_i}^{T_{i+1}} f(X_s) ds$$
, CLT

$$\sqrt{n} \left(\int_0^{T_n} f(X_s) dx / T_n - \mathbb{E}_{\pi}[f] \right) \to \mathcal{N}(0, \sigma_f^2)$$
(3)

where

$$\sigma_{f}^{2} := \mathbb{E}_{X_{0} \sim \mu} \left[\left(Z_{0} - \tau^{(0)} \mathbb{E}_{\pi}[f] \right)^{2} \right] \big/ \left(\mathbb{E}_{X_{0} \sim \mu}[\tau^{(0)}_{\text{warmed}}]^{2} \right)^{2}$$

Given $\pi\text{-invariance}$ of $\{X_t\}_{t\geq 0},$ Monte Carlo validation follows:

$$\mathbb{E}_{\pi}[f] = \mathbb{E}_{X_{0} \sim \mu} \Big[\int_{0}^{\tau^{(0)}} f(X_{s}) \mathrm{d}x \Big] \Big/ \mathbb{E}_{X_{0} \sim \mu}[\tau^{(0)}]$$
(1)

and a.s. convergence of ergodic averages:

$$\frac{1}{t}\int_0^t f(X_s)\mathrm{d} s \to \mathbb{E}_\pi[f] \tag{2}$$

Estimator variance depends on expected tour length: prefer μ favouring long tours

[Wang et al., 2020]

Minimal regeneration measure, $C^+\mu^+$ corresponding to smallest possible rate

$$\kappa^+(x) := \tilde{\kappa}(x) \lor 0 = \tilde{\kappa}(x) + C^+ \mu^+(x) \Big/ \pi(x)$$

leading to

$$\mu^+(x) = \frac{1}{C^+} [0 \vee - \tilde{\kappa}(x)] \pi(x)$$

Frequent regeneration not necessarily detrimental, except when when μ is not well-aligned to π , leading to wasted computation

"Minimal Restore" maximizes expected tour length / minimizes asymptotic variance

[Wang et al., 2021]

When target π lacks its normalizing constant Z

$$\pi(\mathbf{x}) = \tilde{\pi}(\mathbf{x}) / \mathsf{Z},$$

take energy $U(x) := -\log \pi(x) = \log Z - \log \tilde{\pi}(x)$ E.g., when $\{Y_t\}_{t \ge 0}$ Brownian, $\tilde{\kappa}$ function of $\nabla U(x)$ and $\Delta U(x)$

$$\tilde{\kappa}(\mathbf{x}) := \frac{1}{2} \left(\|\nabla \mathbf{U}(\mathbf{x})\|^2 - \Delta \mathbf{U}(\mathbf{x}) \right)$$

Constant approximation

When target π lacks its normalizing constant Z

$$\pi(\mathbf{x}) = \tilde{\pi}(\mathbf{x}) / \mathsf{Z},$$

take energy $U(x) := -\log \pi(x) = \log Z - \log \tilde{\pi}(x)$ In regeneration rate, Z absorbed into C

$$\kappa(x) = \tilde{\kappa}(x) + C \frac{\mu(x)}{\left(\tilde{\pi}(x)/Z\right)} = \tilde{\kappa}(x) + C Z \frac{\mu(x)}{\tilde{\pi}(x)} = \tilde{\kappa}(x) + \tilde{C} \frac{\mu(x)}{\tilde{\pi}(x)}$$

where $\tilde{C} = CZ$ set by user. Since

$$C = 1/\mathbb{E}_{\mu}[\tau],$$

using n tours with simulation time T,

 $Z \approx \tilde{C}T/n$

Adaptive Restore process defined by enriching underlying continuous-time Markov process with regenerations at rate κ^+ from distribution μ_t at time t

Convergence of (μ_t, π_t) to (μ^+, π) : a.s. convergence of stochastic approximation algorithms for discrete-time processes on compact spaces

[Benaïm et al., 2018; McKimm et al., 2024]

Initial regeneration distribution μ_0 and updates by addition of point masses

$$\mu_t(x) = \begin{cases} \mu_0(x), & \text{if } N(t) = 0, \\ \frac{t}{a+t} \frac{1}{N(t)} \sum_{i=1}^{N(t)} \delta_{X_{\zeta_i}}(x) + \frac{a}{a+t} \mu_0(x), & \text{if } N(t) > 0, \end{cases}$$

where a>0 constant and ζ_i arrival times of inhomogeneous Poisson process $(N(t):t\geq 0)$ with rate $\kappa^-(X_t)$

$$\kappa^{-}(\mathbf{x}) := [\mathbf{0} \lor -\tilde{\kappa}(\mathbf{x})]$$

Poisson process simulated by Poisson thinning, under (strong) assumption

$$K^- := \sup_{x \in \mathcal{X}} \kappa^-(x) > 0$$

Adaptive Brownian Restore Algorithm

```
t \leftarrow 0, E \leftarrow \emptyset, i \leftarrow 0, X \sim \mu_0.
while i < n do
        \tilde{\tau} \sim \operatorname{Exp}(\mathsf{K}^+), \mathfrak{s} \sim \operatorname{Exp}(\Lambda_0), \tilde{\zeta} \sim \operatorname{Exp}(\mathsf{K}^-).
        if \tilde{\tau} < s and \tilde{\tau} < \tilde{\ell} then
                X \sim \mathcal{N}(X, \tilde{\tau}), t \leftarrow t + \tilde{\tau}, u \sim \mathcal{U}[0, 1].
                if u < \kappa^+(X)/K^+ then
                       if |\mathsf{E}| = 0 then
                         | X \sim \mu_0.
                        else
                        | X \sim \mathcal{U}(E) with probability t/(a+t), else X \sim \mu_0.
                        end
                       i \leftarrow i + 1.
                end
        else if s < \tilde{\tau} and s < \tilde{\zeta} then
               X \sim \mathcal{N}(X, s), t \leftarrow t + s, record X, t. i.
        else
               X \sim \mathcal{N}(X, \tilde{\zeta}), t \leftarrow t + \tilde{\zeta}, u \sim \mathcal{U}[0, 1].
               If u < \kappa^{-}(X)/K^{-} then E \leftarrow E \cup \{X\}.
        end
                                                                                                                                 end
```

ABRA...cadabra

Path of an Adaptive Brownian Restore process with $\pi \equiv \mathcal{N}(0, 1), \mu_0 \equiv \mathcal{N}(2, 1), a = 10$. Green dots and red crosses as first and last output states of each tour.

Calibrating initial regeneration and parameters

- ▶ μ_0 as initial approximate of π , e.g., $\mu_0 \equiv \mathcal{N}_d(0, I)$ with π pre-transformed
- ► trade-off in choosing discrete measure dominance time: smaller choices of **a** for faster convergence versus larger values of **a** for more regenerations from μ_0 , hence better exploration (range of **a**: between 10^3 and 10^4)
- \blacktriangleright \mathcal{K}^+ and K^- based on quantiles of $\tilde{\kappa},$ from preliminary MCMC runs
- ▶ or, assuming π close to Gaussian, initial guess of K⁻ is d/2 and initial estimate for \mathcal{K}^+ based on χ^2 approximation

- Adaptive Restore benefits from global moves, for targets hard to approximate with a parametric distribution, with large moves across the space
- Use of minimal regeneration rate makes simulation computationally feasible and more likely in areas where π has significant mass
- ▶ In comparison with wandom walk Metropolis, ABRA can be slow but with higher efficiency for targets π with skewed tails

Part II: Importance Monte Carlo

Joint work with C Andral, R Douc and H Marival arXiv:2207.08271 – Stoch Proc & Appli

Mixing MCMC and rejection sampling :

- 1. Draw Markov chain $(\tilde{X}_i)_{1 \le i \le m}$ from kernel Q targeting $\tilde{\pi}$
- 2. With probability $\rho(\tilde{X}_i) \in (0, 1)$ (e.g. $\rho = \pi/(M\tilde{\pi})$), accept proposal
- 3. Resulting in new Markov chain $(X_i)_{1 \le i \le n}$, $(n \le m)$

Mixing MCMC and rejection sampling :

- 1. Draw Markov chain $(\tilde{X}_i)_{1 \le i \le m}$ from kernel Q targeting $\tilde{\pi}$
- 2. With probability $\rho(\tilde{X}_i) \in (0, 1)$ (e.g. $\rho = \pi/(M\tilde{\pi})$), accept proposal
- 3. Resulting in new Markov chain $(X_i)_{1 \leq i \leq n}, \, (n \leq m)$

Corresponding to kernel S for $\left(X_{i}\right)$

$$Sh(x) = \sum_{k=1}^{\infty} \mathbb{E}_x^Q \left[\rho(X_k) h(X_k) \left(\prod_{i=1}^{k-1} (1 - \rho(X_i)) \right) \right]$$

Nice (recursive) equation

 $Sh(x) = Q(\rho h)(x) + Q((1-\rho)Sh)(x)$

Corresponding to kernel S for $\left(X_{i}\right)$

$$Sh(x) = \sum_{k=1}^{\infty} \mathbb{E}_x^Q \left[\rho(X_k) h(X_k) \left(\prod_{i=1}^{k-1} (1 - \rho(X_i)) \right) \right]$$

Nice (recursive) equation

$$Sh(x) = Q(\rho h)(x) + Q((1-\rho)Sh)(x)$$

If $\tilde{\pi}Q = \tilde{\pi}$, then S is $\rho \cdot \tilde{\pi}$ invariant $\int \rho(x) \tilde{\pi}(\mathrm{d}x) S(x, \mathrm{d}y) = \rho(y) \tilde{\pi}(\mathrm{d}y)$

Direct consequence : if $\rho = \frac{\pi}{M\tilde{\pi}}$, S is π -invariant

If
$$\tilde{\pi}Q = \tilde{\pi}$$
, then S is $\rho \cdot \tilde{\pi}$ invariant
$$\int \rho(x)\tilde{\pi}(\mathrm{d}x)S(x,\mathrm{d}y) = \rho(y)\tilde{\pi}(\mathrm{d}y)$$

Direct consequence : if $\rho = \frac{\pi}{M\tilde{\pi}}$, S is π -invariant

From rejection to importance

From

to

From rejection to importance

From

\blacktriangleright Case when ρ may take values above 1

- ► Define $\rho_{\kappa}(\mathbf{x}) := \kappa \frac{\pi(\mathbf{x})}{\tilde{\pi}(\mathbf{x})}$ for free parameter κ
- Allow to repeat elements of the chain
- $$\label{eq:complexity} \begin{split} \blacktriangleright \ Accept \ \tilde{N}_i \sim \tilde{R}(\tilde{X}_i, .) \ copies \ of \ \tilde{X}_i, \ with \ \tilde{R}_i \ kernel \ in \ \mathbb{N} \ s.t. \\ \mathbb{E}[\tilde{N}_i | \tilde{X}_i] = \rho_\kappa(\tilde{X}_i), \ e.g. \end{split}$$

$$\tilde{N}_{i} = \left\lfloor \rho_{\kappa}(\tilde{X}_{i}) \right\rfloor + \mathcal{B}e\left(\left\{ \rho_{\kappa}(\tilde{X}_{i}) \right\} \right)$$

- \blacktriangleright Case when ρ may take values above 1
- ► Define $\rho_{\kappa}(x) := \kappa \frac{\pi(x)}{\tilde{\pi}(x)}$ for free parameter κ
- ▶ Allow to repeat elements of the chain
- $\label{eq:complexity} \begin{array}{l} \blacktriangleright \ \operatorname{Accept} \, \tilde{N}_i \sim \tilde{R}(\tilde{X}_i,.) \ \mathrm{copies} \ \mathrm{of} \ \tilde{X}_i, \ \mathrm{with} \ \tilde{R}_i \ \mathrm{kernel} \ \mathrm{in} \ \mathbb{N} \ \mathrm{s.t.} \\ \mathbb{E}[\tilde{N}_i | \tilde{X}_i] = \rho_\kappa(\tilde{X}_i), \ \mathrm{e.g.} \end{array}$

$$\tilde{N}_{i} = \left\lfloor \rho_{\kappa}(\tilde{X}_{i}) \right\rfloor + \mathcal{B}e\left(\left\{ \rho_{\kappa}(\tilde{X}_{i}) \right\} \right)$$

(i) Self-regenerative chain: independent draws $(Q(x, .) = \tilde{\pi})$ and $N_i = V \cdot S$ copies where $S \sim \mathcal{G}eo(q), V \sim \mathcal{B}e(p)$ [Sahu and Zhigljavsky 2003; Gåsemyr 2002]

(ii) Proposals in a semi-Markov approach [Malefaki and Iliopoulos 2008]

(iii) Dynamic Weighting Monte Carlo and *correctly weighted* joint density:

 $\int wf(\mathbf{x}, w) \mathrm{d}w \propto \pi(\mathbf{x})$

[Wong and Liang 1997; Liu, Liang, and Wong 2001]

Algorithm 1: Importance Markov chain (IMC)

 $\begin{array}{l} \ell \leftarrow 0 \\ \text{Set an arbitrary } \tilde{X}_0 \\ \textbf{for } \mathbf{k} \leftarrow 1 \ \textbf{to n } \mathbf{do} \\ & \\ & \\ & \\ \text{Draw } \tilde{X}_k \sim Q(\tilde{X}_{k-1}, \cdot) \ \text{and } \tilde{N}_k \sim \tilde{R}(\tilde{X}_k, \cdot) \\ & \\ & \\ & \\ \text{Set } N_\ell = \tilde{N}_k \\ \textbf{while } \mathbf{N}_\ell \geq 1 \ \textbf{do} \\ & \\ & \\ & \\ & \\ & \\ & \\ \text{Set } (X_\ell, \mathbf{N}_\ell) \leftarrow (\tilde{X}_k, \mathbf{N}_\ell - 1) \\ & \\ & \\ & \\ & \\ & \\ \text{end} \end{array}$

$$\begin{array}{c} \operatorname{If} N_k > 0: \\ X_k \longrightarrow X_{k+1} = X_k \\ N_k \neq 0 \longrightarrow N_{k+1} = N_k - 1 \end{array} \qquad \begin{array}{c} \operatorname{If} N_k = 0: \\ X_k \longrightarrow X_{k+1} \sim Q(X_k, .) \\ \downarrow \\ N_k = 0 \qquad N_{k+1} \sim R(X_{k+1}, .) \end{array}$$

Define an extended Markov chain (X_i, N_i) where X_i and \tilde{X}_i in same space, and $N_i \in \mathbb{N}$ (counting number of repetitions) Associated kernel

$$\begin{split} \mathsf{Ph}(\mathbf{x},\mathbf{n}) &= \mathbb{I}_{\{n\geq 1\}} \mathbf{h}(\mathbf{x},\mathbf{n}-1) \\ &+ \mathbb{I}_{\{n=0\}} \sum_{\mathbf{n}'=0}^{\infty} \int_{X} \mathsf{S}(\mathbf{x},\mathrm{d}\mathbf{x}') \mathsf{R}(\mathbf{x}',\mathbf{n}') \mathbf{h}(\mathbf{x}',\mathbf{n}') \end{split}$$

where

$$\begin{split} \rho_{\tilde{R}}(x) &= \tilde{R}(x, [1, \infty)) \in [0, 1] \\ R(x, n) &:= \tilde{R}(x, n+1) / \rho_{\tilde{R}}(x) \end{split}$$

Define an extended Markov chain (X_i,N_i) where X_i and \tilde{X}_i in same space, and $N_i \in \mathbb{N}$ (counting number of repetitions) Associated kernel

$$\begin{split} \mathsf{Ph}(\mathbf{x},\mathbf{n}) &= \mathbb{I}_{\{n\geq 1\}} h(\mathbf{x},\mathbf{n}-1) \\ &+ \mathbb{I}_{\{n=0\}} \sum_{\mathbf{n}'=0}^{\infty} \int_{\mathsf{X}} \mathsf{S}(\mathbf{x},\mathrm{d}\mathbf{x}') \mathsf{R}(\mathbf{x}',\mathbf{n}') h(\mathbf{x}',\mathbf{n}') \end{split}$$

where

$$\begin{split} \rho_{\tilde{R}}(x) &= \tilde{R}(x, [1, \infty)) \in [0, 1] \\ R(x, n) &:= \tilde{R}(x, n+1) / \rho_{\tilde{R}}(x) \end{split}$$

Measure $\bar{\pi}$ on $X \times \mathbb{N}$:

$$\overline{\pi}(h) = \kappa^{-1} \sum_{n=1}^{\infty} \int_{X} \tilde{\pi}(\mathrm{d}x) \tilde{R}(x,n) \sum_{k=0}^{n-1} h(x,k)$$

such that

- 1. If $\sum_{n=0}^{\infty} \tilde{R}(x,n)n = \rho_{\kappa}(x)$, marginal of $\overline{\pi}$ on the first component equal to π
- 2. if $\tilde{\pi} \mathbf{Q} = \tilde{\pi}$, Markov kernel $\overline{\pi}$ -invariant

Measure $\bar{\pi}$ on $X \times \mathbb{N}$:

$$\overline{\pi}(h) = \kappa^{-1} \sum_{n=1}^{\infty} \int_{X} \tilde{\pi}(\mathrm{d}x) \tilde{R}(x,n) \sum_{k=0}^{n-1} h(x,k)$$

such that

- 1. If $\sum_{n=0}^{\infty} \tilde{R}(x,n)n = \rho_{\kappa}(x)$, marginal of $\overline{\pi}$ on the first component equal to π
- 2. if $\tilde{\pi} \mathbf{Q} = \tilde{\pi}$, Markov kernel $\overline{\pi}$ -invariant

If for every $\xi \in M_1(X)$ and $\tilde{\pi}$ integrable function g,

$$\lim_{n\to\infty} n^{-1} \sum_{k=0}^{n-1} g(\tilde{X}_k) = \tilde{\pi}(g), \quad \mathbb{P}^{\mathbb{Q}}_{\xi} - as$$

then, for every $\bar{\pi}$ integrable function g,

$$\lim_{n\to\infty} n^{-1} \sum_{k=0}^{K_n-1} g(X_k) N_k = \bar{\pi}(g), \quad \mathbb{P}^{P}_{\xi} - \mathfrak{as}$$

Under conditions on Q, $\tilde{\pi}$, take $h: X \to \mathbb{R}$ as solution of a Poisson equation for Q, then

$$\frac{1}{\sqrt{n}}\sum_{i=1}^{n}\left(h(X_{i})-\pi(h)\right) \stackrel{\mathbb{P}^{P}_{X}-law}{\leadsto} \mathcal{N}(0,\sigma^{2}(h)),$$

where

$$\sigma^2(h) = \kappa \tilde{\sigma}^2(\rho h_0) + \kappa^{-1} \hat{\sigma}^2(h_0,\kappa),$$

$$\begin{split} \tilde{\sigma}^2(\rho h_0) \ is \ the \ variance \ obtained \ with \ Q, \\ \hat{\sigma}^2(h_0,\kappa) &:= \int_X h_0^2(x) \mathbb{V}\mathrm{ar}_x^{\tilde{R}}[N] \tilde{\pi}(dx), \\ \mathbb{V}\mathrm{ar}_x^{\tilde{R}}[N] &:= \int_{\mathbb{N}} \tilde{R}(x,\mathrm{d}n) n^2 - \left(\int_{\mathbb{N}} \tilde{R}(x,\mathrm{d}n)n\right)^2. \end{split}$$

Under conditions on Q, $\tilde{\pi}$, take $h: X \to \mathbb{R}$ as solution of a Poisson equation for Q, then

$$\frac{1}{\sqrt{n}}\sum_{i=1}^{n}\left(h(X_{i})-\pi(h)\right) \stackrel{\mathbb{P}^{P}_{X} \to a}{\longrightarrow} \mathcal{N}(0,\sigma^{2}(h)),$$

where

$$\sigma^{2}(h) = \kappa \tilde{\sigma}^{2}(\rho h_{0}) + \kappa^{-1} \hat{\sigma}^{2}(h_{0}, \kappa),$$

 $\tilde{\sigma}^2(\rho h_0)$ variance coming from instrumental chain, $\hat{\sigma}^2(h_0,\kappa)$ variance from random number of repetitions

 $\hat{\sigma}$ depends on the variance of \tilde{R}

$$\mathbb{V}\mathrm{ar}_x^{\tilde{R}}[N] := \int_{\mathbb{N}} \tilde{R}(x,\mathrm{d} n) n^2 - \left(\int_{\mathbb{N}} \tilde{R}(x,\mathrm{d} n) n\right)^2$$

For N integer-value random variable such that $\mathbb{E}[N]=\rho<\infty,$

$$\mathbb{V}\mathrm{ar}(N) \geq \{\rho\} \left(1-\{\rho\}\right)$$

LoBound met by $N=\lfloor\rho\rfloor+S,$ where $S\sim Ber(\{\rho\})$ (used as "shifted Bernoulli" kernel default)

Under assumptions on Q and \tilde{R} , P has unique invariant probability measure $\bar{\pi}$ and there exist constants $\delta, \beta_r > 1$, $\zeta < \infty$, such that for all $\xi \in M_1(X \times \mathbb{N})$,

$$\sum_{k=1}^\infty \delta^k d_{TV}(\xi P^k,\bar{\pi}) \leq \zeta \int_{X\times\mathbb{N}} \beta_r^n V(x)\,\xi(\mathrm{d}x\mathrm{d}n).$$

Pseudo-marginal version

- Cases when the density π not available but replaced by (unbiased) estimate, leading to pseudo-marginal method. [Andrieu and Roberts 2009]
- Extension: Importance Markov chain "pseudo-marginal compatible" when unbiased estimate available draw $\hat{\pi}(X_i)$ (with expectation $\pi(x)$) and

 $N_i \sim \left\lfloor \hat{\pi} / \tilde{\pi}(X_i) \right\rfloor + \mathcal{B}e\left(\{ \hat{\pi} / \tilde{\pi}(X_i) \} \right)$

by enlarging the chain structure

- ... and even with unbiased estimate of $\tilde{\pi}$
- resulting in higher variance

Pseudo-marginal version

- Cases when the density π not available but replaced by (unbiased) estimate, leading to pseudo-marginal method. [Andrieu and Roberts 2009]
- Extension: Importance Markov chain "pseudo-marginal compatible" when unbiased estimate available draw $\hat{\pi}(X_i)$ (with expectation $\pi(x)$) and

$$N_i \sim \lfloor \hat{\pi}/\tilde{\pi}(X_i) \rfloor + \mathcal{B}e\left(\{\hat{\pi}/\tilde{\pi}(X_i)\}\right)$$

by enlarging the chain structure

- ▶ ... and even with unbiased estimate of $\tilde{\pi}$
- resulting in higher variance

Several factors to choose :

- ▶ auxiliary distribution $\tilde{\pi}$
- ▶ kernel Q
- $\blacktriangleright\,$ value of $\kappa\,$

About **k**

Several things to note

- \triangleright κ is arbitrary if π and π̃ are unnormalized.
- ▶ the length of the final chain (X_i) grows linearly in κ for a fixed length n chain (\tilde{X}_i)
- \blacktriangleright hence, automatic tuning κ achieved by setting length of chain
- $$\begin{split} \blacktriangleright & \text{For ESS}_{\kappa} := (\sum_{i=1}^{n} \tilde{N}_{i})^{2} / \sum_{i=1}^{n} \tilde{N}_{i}^{2} \text{ and usual IS ESS:} \\ & \text{ESS}_{\text{IS}} := (\sum_{i=1}^{n} \rho(\tilde{X}_{i}))^{2} / \sum_{i=1}^{n} \rho(\tilde{X}_{i})^{2} \end{split}$$

$$\mathrm{ESS}_{\kappa} \xrightarrow[\kappa \to \infty]{} \mathrm{ESS}_{\mathrm{IS}}$$

Warning: notion of ESS not accounting for convergence of Markov chain

Several things to note

- \triangleright κ is arbitrary if π and π̃ are unnormalized.
- ▶ the length of the final chain (X_i) grows linearly in κ for a fixed length n chain (\tilde{X}_i)
- \blacktriangleright hence, automatic tuning κ achieved by setting length of chain
- $$\begin{split} \blacktriangleright & \text{For ESS}_{\kappa} := (\sum_{i=1}^{n} \tilde{N}_{i})^{2} / \sum_{i=1}^{n} \tilde{N}_{i}^{2} \text{ and usual IS ESS:} \\ & \text{ESS}_{\text{IS}} := (\sum_{i=1}^{n} \rho(\tilde{X}_{i}))^{2} / \sum_{i=1}^{n} \rho(\tilde{X}_{i})^{2} \end{split}$$

$$\mathrm{ESS}_{\kappa} \xrightarrow[\kappa \to \infty]{} \mathrm{ESS}_{\mathrm{IS}}$$

Warning: notion of ESS not accounting for convergence of Markov chain

Several things to note

- \triangleright κ is arbitrary if π and π̃ are unnormalized.
- ▶ the length of the final chain (X_i) grows linearly in κ for a fixed length n chain (\tilde{X}_i)
- \blacktriangleright hence, automatic tuning κ achieved by setting length of chain

$$\begin{split} \blacktriangleright & \operatorname{For} \, \operatorname{ESS}_{\kappa} := (\sum_{i=1}^{n} \tilde{N}_{i})^{2} / \sum_{i=1}^{n} \tilde{N}_{i}^{2} \, \operatorname{and} \, \operatorname{usual} \, \operatorname{IS} \, \operatorname{ESS}: \\ & \operatorname{ESS}_{\operatorname{IS}} := (\sum_{i=1}^{n} \rho(\tilde{X}_{i}))^{2} / \sum_{i=1}^{n} \rho(\tilde{X}_{i})^{2} \end{split}$$

$$\mathrm{ESS}_{\kappa} \xrightarrow[\kappa \to \infty]{} \mathrm{ESS}_{\mathrm{IS}}$$

Warning: notion of ESS not accounting for convergence of Markov chain

Dimension = 5, mixture of 6 gaussians

Impact of κ on ESS and Markov chain length

Independent IMC and normalizing flows

► Target: π a d-dimensional distribution, with 2^d modes, concentrated around the sphere

$$\pi(\mathbf{x}) \propto \exp\left(-\frac{1}{2}\left(\frac{\|\mathbf{x}\| - 2}{0.1}\right)^2 - \sum_{i=1}^d \log\left(e^{-\frac{1}{2}(\frac{\mathbf{x}_i + 3}{0.6})^2} + e^{-\frac{1}{2}(\frac{\mathbf{x}_i - 3}{0.6})^2}\right)\right)$$

- ► Instrumental density and kernel: a normalizing flow T is trained to approximate π : $Q(x, .) = \tilde{\pi}(.) = T_{\sharp}\mathcal{N}(0, 1)$
- Comparison with Metropolis–Hastings and Self Regenerative MCMC

[Sahu and Zhigljavsky 2003; Gabrié et al 2022]

- ► Versatile framework that applies to many different kernels Q and auxiliary distributions $\tilde{\pi}$
- Extensions: adaptive version multiple auxiliary chains delayed acceptance

References I

- - Andrieu, Christophe and Gareth O. Roberts (Apr. 2009). "The Pseudo-Marginal Approach for Efficient Monte Carlo Computations". In: The Annals of Statistics 37.2, pp. 697–725.
- Gåsemyr, Jørund (2002). Markov Chain Monte Carlo Algorithms with Independent Proposal Distribution and Their Relationship to Importance Sampling and Rejection Sampling. Tech. rep.
- Liu, Jun S, Faming Liang, and Wing Hung Wong (June 2001). "A Theory for Dynamic Weighting in Monte Carlo Computation". In: Journal of the American Statistical Association 96.454, pp. 561–573.
- Malefaki, Sonia and George Iliopoulos (Apr. 2008). "On Convergence of Properly Weighted Samples to the Target Distribution". In: Journal of Statistical Planning and Inference 138.4, pp. 1210–1225.
- Sahu, Sujit K. and Anatoly A. Zhigljavsky (June 2003). "Self-Regenerative Markov Chain Monte Carlo with Adaptation". In: Bernoulli 9.3, pp. 395–422.
- Wong, Wing Hung and Faming Liang (Dec. 1997). "Dynamic Weighting in Monte Carlo and Optimization". In: Proceedings of the National Academy of Sciences 94.26, pp. 14220–14224.

