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Part I: Adaptive Restore algorithm
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MCMC regeneration

Reversibility attached with (sub-efficient) random walk
behaviour
Recent achievements in non-reversible MCMC with PDMPs

[Bouchard-Côté et al., 2018; Bierkens et al., 2019]

Link with regeneration
[Nummelin, 1978; Mykland et al., X, 1995]

At regeneration times, Markov chain starts again: future
independent of past
Scales poorly: regenerations recede exponentially with
dimension
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PDMP: Marketing arguments

Current (?) default workhorse: reversible MCMC methods
(incl. NUTS)

[Hoffman & Gelman, 2014]

Non-reversible MCMC algorithms based on piecewise
deterministic Markov processes (aka PDMP) perform well
empirically



PDMP: Marketing arguments

Non-reversible MCMC algorithms based on piecewise
deterministic Markov processes (aka PDMP) perform well
empirically
Quantitative convergence rates and variance now available
▶ Physics origins

[Peters & De With, 2012; Krauth et al., 2009, 15, 16]
▶ geometric ergodicity for exponentially decaying tail target

[Mesquita & Hespanha, 2010]
▶ ergodicity targets on the real line

[Bierkens et al., 2016a,b]



Piecewise deterministic Markov process

PDMP sampler is a continuous-time, non-reversible, MCMC,
method based on auxiliary variables

1. empirically state-of-the-art performances
[Bouchard et al., 2017]

2. exact subsampling for big data
[Bierkens et al., 2017]

3. geometric ergodicity for large class of distribution
[Deligiannidis et al., 2017]

4. Ability to deal with intractable potential
logπ(x) =

∫
Uω(x)µ(dω)

[Pakman et al., 2016]



Piecewise deterministic Markov process

Piecewise deterministic Markov process {zt ∈ Z}t∈[0,∞), with
three ingredients,

1. Deterministic dynamics: between events, deterministic
evolution based on ODE

dzt/dt = Φ(zt)

2. Event occurrence rate: λ(t) = λ(zt)

3. Transition dynamics: At event time, τ, state prior to τ

denoted by zτ−, and new state generated by zτ ∼ Q(·|zτ−).
[Davis, 1984, 1993]



Implementation hardships

Main difficulties of implementing PDMP come from
1. Computing the ODE flow Ψ: linear dynamic, quadratic

dynamic
2. Simulating the inter-event time ηk: many techniques of

superposition and thinning for Poisson processes
[Devroye, 1986]



Simulation by superposition plus thinning

Most implementations thru discrete-time schemes by sampling
Bernoulli B(α(z))
For

Φ(z) = (x+ vε, v) and α(z) = 1∧ π(x+ vε)/π(x)

sampling inter-event time for strictly convex U(·) obtained by
solving

t⋆ = arg min
t

U(x+ vt)

and additional randomization
▶ thinning: if there exists ᾱ such that α(Φ(z)) ≥ ᾱ(x, k),

accept-reject
▶ superposition and thinning: when α(z) = 1∧ ρ(Φ(z))/ρ(z)

and ρ(·) =
∏

i ρi(·) then ᾱ(z, k) =
∏

i ᾱi(z, k)

[Bouchard et al., 2017]



Restore process
Take {Yt}t≥0 diffusion / jump process on Rd with infinitesimal
generator LY and Y0 ∼ µ

Regeneration rate κ with associated tour length

τ = inf
{
t ≥ 0 :

∫ t
0

κ(Ys)ds ≥ ξ

}
with ξ ∼ Exp(1)

(
{Y

(i)
t }t≥0, τ

(i)
)∞
i=0

iid realisations inducing regeneration times

Tj =

j−1∑
i=0

τ(i)

Restore process {Xt}t≥0 given by:

Xt =
∞∑
i=0

I[Ti,Ti+1)(t)Y
(i)
t−Ti

[Wang et al., 2021]



Restore process
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Path of five tours of Brownian Restore with
π ≡ N (0, 12), µ ≡ N (0, 22) and C such that minx∈R κ(x) = 0,

with K = 200 and Λ0 = 1000. First and last output states
shown by green dots and red crosses



Stationarity of Restore

Infinitesimal generator of {Xt}t≥0

LXf(x) = LYf(x) + κ(x)

∫
[f(y) − f(x)]µ(y)dy

with adjoint L
†
Y

Regeneration rate κ chosen as

κ(x) = L
†
Yπ(x)

/
π(x) + Cµ(x)

/
π(x)

Implies {Xt}t≥0 is π-invariant∫
Rd

LXf(x)π(x)dx = 0



Restore sampler

Rewrite

κ(x) =
L

†
Yπ(x)

π(x)
+ C

µ(x)

π(x)
= κ̃(x) + C

µ(x)

π(x)

with
▶ κ̃ partial regeneration rate
▶ C > 0 regeneration constant and
▶ Cµ regeneration measure, large enough for κ(·) > 0

Resulting Monte Carlo method called Restore Sampler
[Wang et al., 2021]



Restore sampler convergence
Given π-invariance of {Xt}t≥0, Monte Carlo validation follows:

Eπ[f] = EX0∼µ

[ ∫τ(0)
0

f(Xs)dx
]/

EX0∼µ[τ
(0)] (1)

and a.s. convergence of ergodic averages:

1

t

∫ t
0

f(Xs)ds→ Eπ[f] (2)

For iid Zi :=
∫Ti+1

Ti
f(Xs)ds, CLT

√
n

(∫ Tn
0

f(Xs)dx
/
Tn − Eπ[f]

)→ N (0, σ2
f) (3)

where

σ2
f := EX0∼µ

[(
Z0 − τ(0)Eπ[f]

)2]/(
EX0∼µ[τ

(0)]
)2



Restore sampler convergence

Given π-invariance of {Xt}t≥0, Monte Carlo validation follows:

Eπ[f] = EX0∼µ

[ ∫τ(0)
0

f(Xs)dx
]/

EX0∼µ[τ
(0)] (1)

and a.s. convergence of ergodic averages:

1

t

∫ t
0

f(Xs)ds→ Eπ[f] (2)

Estimator variance depends on expected tour length: prefer µ

favouring long tours
[Wang et al., 2020]



Minimal regeneration

Minimal regeneration measure, C+µ+ corresponding to smallest
possible rate

κ+(x) := κ̃(x)∨ 0 = κ̃(x) + C+µ+(x)
/
π(x)

leading to
µ+(x) =

1

C+
[0∨−κ̃(x)]π(x)

Frequent regeneration not necessarily detrimental, except when
when µ is not well-aligned to π, leading to wasted computation

"Minimal Restore" maximizes expected tour length / minimizes
asymptotic variance

[Wang et al., 2021]



Constant approximation

When target π lacks its normalizing constant Z

π(x) = π̃(x)
/
Z,

take energy U(x) := − logπ(x) = logZ− log π̃(x)
E.g., when {Yt}t≥0 Brownian, κ̃ function of ∇U(x) and ∆U(x)

κ̃(x) :=
1

2

(
||∇U(x)||2 − ∆U(x)

)



Constant approximation
When target π lacks its normalizing constant Z

π(x) = π̃(x)
/
Z,

take energy U(x) := − logπ(x) = logZ− log π̃(x)
In regeneration rate, Z absorbed into C

κ(x) = κ̃(x) + C
µ(x)(

π̃(x)
/
Z
) = κ̃(x) + CZ

µ(x)

π̃(x)
= κ̃(x) + C̃

µ(x)

π̃(x)

where C̃ = CZ set by user. Since

C = 1/Eµ[τ],

using n tours with simulation time T ,

Z ≈ C̃T
/
n



Adapting Restore

Adaptive Restore process defined by enriching underlying
continuous-time Markov process with regenerations at rate κ+

from distribution µt at time t

Convergence of (µt, πt) to (µ+, π): a.s. convergence of stochastic
approximation algorithms for discrete-time processes on
compact spaces

[Benaïm et al., 2018; McKimm et al., 2024]



Adapting Restore

Initial regeneration distribution µ0 and updates by addition of
point masses

µt(x) =

{
µ0(x), if N(t) = 0,
t

a+t
1

N(t)

∑N(t)
i=1 δXζi

(x) + a
a+tµ0(x), if N(t) > 0,

where a > 0 constant and ζi arrival times of inhomogeneous
Poisson process (N(t) : t ≥ 0) with rate κ−(Xt)

κ−(x) := [0∨−κ̃(x)]

Poisson process simulated by Poisson thinning, under (strong)
assumption

K− := sup
x∈X

κ−(x) > 0



Adaptive Brownian Restore Algorithm

t← 0, E← ∅, i← 0, X ∼ µ0.

while i < n do
τ̃ ∼ Exp(K+), s ∼ Exp(Λ0), ζ̃ ∼ Exp(K−).
if τ̃ < s and τ̃ < ζ̃ then

X ∼ N (X, τ̃), t← t + τ̃, u ∼ U [0, 1].
if u < κ+(X)/K+ then

if |E| = 0 then
X ∼ µ0.

else
X ∼ U(E) with probability t/(a + t), else X ∼ µ0.

end
i← i + 1.

end
else if s < τ̃ and s < ζ̃ then

X ∼ N (X, s), t← t + s, record X, t, i.
else

X ∼ N (X, ζ̃), t← t + ζ̃, u ∼ U [0, 1].
If u < κ−(X)/K− then E← E ∪ {X}.

end
end



ABRA...cadabra
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Path of an Adaptive Brownian Restore process with
π ≡ N (0, 1), µ0 ≡ N (2, 1), a = 10. Green dots and red crosses

as first and last output states of each tour.



Calibrating initial regeneration and parameters

▶ µ0 as initial approximate of π, e.g., µ0 ≡ Nd(0, I) with π

pre-transformed
▶ trade-off in choosing discrete measure dominance time:

smaller choices of a for faster convergence versus larger
values of a for more regenerations from µ0, hence better
exploration (range of a: between 103 and 104)

▶ K+ and K− based on quantiles of κ̃, from preliminary
MCMC runs

▶ or, assuming π close to Gaussian, initial guess of K− is d/2

and initial estimate for K+ based on χ2 approximation



Final remarks

▶ Adaptive Restore benefits from global moves, for targets
hard to approximate with a parametric distribution, with
large moves across the space

▶ Use of minimal regeneration rate makes simulation
computationally feasible and more likely in areas where π

has significant mass
▶ In comparison with wandom walk Metropolis, ABRA can

be slow but with higher efficiency for targets π with skewed
tails



Part II: Importance Monte Carlo

Joint work with C Andral, R Douc and H Marival
arXiv:2207.08271 – Stoch Proc & Appli



Rejection Markov chain

Mixing MCMC and rejection sampling :
1. Draw Markov chain (X̃i)1≤i≤m from kernel Q targeting π̃

2. With probability ρ(X̃i) ∈ (0, 1) (e.g. ρ = π/(Mπ̃)), accept
proposal

3. Resulting in new Markov chain (Xi)1≤i≤n, (n ≤ m)

X̃1 X̃2 X̃3 X̃4 X̃5
. . .

X1 X2 X3
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Rejection Markov Chain (cont’d)

Corresponding to kernel S for (Xi)

Sh(x) =
∞∑
k=1

EQ
x

ρ(Xk)h(Xk)

k−1∏
i=1

(1− ρ(Xi))


Nice (recursive) equation

Sh(x) = Q(ρh)(x) +Q((1− ρ)Sh)(x)



Rejection Markov Chain (cont’d)

Corresponding to kernel S for (Xi)

Sh(x) =
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EQ
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Invariant measure for S

If π̃Q = π̃, then S is ρ · π̃ invariant∫
ρ(x)π̃(dx)S(x, dy) = ρ(y)π̃(dy)

Direct consequence : if ρ =
π

Mπ̃
, S is π-invariant
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From rejection to importance

From

X̃1 X̃2 X̃3 X̃4 X̃5
. . .

X1 X2 X3

to

X̃1 X̃2 X̃3 X̃4 X̃5
. . .

X2X1 X3 X5 X6X4
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Importance Markov chain

▶ Case when ρ may take values above 1

▶ Define ρκ(x) := κ
π(x)
π̃(x) for free parameter κ

▶ Allow to repeat elements of the chain
▶ Accept Ñi ∼ R̃(X̃i, .) copies of X̃i, with R̃i kernel in N s.t.

E[Ñi|X̃i] = ρκ(X̃i), e.g.

Ñi =
⌊
ρκ(X̃i)

⌋
+ Be

({
ρκ(X̃i)

})
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Related works

(i) Self-regenerative chain: independent draws (Q(x, .) = π̃) and
Ni = V · S copies where S ∼ Geo(q), V ∼ Be(p)

[Sahu and Zhigljavsky 2003; Gåsemyr 2002]

(ii) Proposals in a semi-Markov approach
[Malefaki and Iliopoulos 2008]

(iii) Dynamic Weighting Monte Carlo and correctly weighted
joint density: ∫

wf(x,w)dw ∝ π(x)

[Wong and Liang 1997; Liu, Liang, and Wong 2001]



IMC algorithm

Algorithm 1: Importance Markov chain (IMC)
ℓ← 0

Set an arbitrary X̃0

for k← 1 to n do
Draw X̃k ∼ Q(X̃k−1, ·) and Ñk ∼ R̃(X̃k, ·)
Set Nℓ = Ñk

while Nℓ ≥ 1 do
Set (Xℓ, Nℓ)← (X̃k, Nℓ − 1)
Set ℓ← ℓ+ 1

end
end



Dynamics of the chain

If Nk > 0 :
Xk

Nk ̸= 0

Xk+1 = Xk

Nk+1 = Nk − 1

If Nk = 0 :
Xk

Nk = 0

Xk+1 ∼ Q(Xk, .)

Nk+1 ∼ R(Xk+1, .)



Formalisation of IMC

Define an extended Markov chain (Xi, Ni) where Xi and X̃i in
same space, and Ni ∈ N (counting number of repetitions)
Associated kernel

Ph(x, n) = I{n≥1}h(x, n− 1)

+ I{n=0}

∞∑
n ′=0

∫
X
S(x, dx ′)R(x ′, n ′)h(x ′, n ′)

where

ρR̃(x) = R̃(x, [1,∞)) ∈ [0, 1]

R(x, n) := R̃(x, n+ 1)/ρR̃(x)
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Invariant for P

Measure π̄ on X× N:

π(h) = κ−1
∞∑
n=1

∫
X
π̃(dx)R̃(x, n)

n−1∑
k=0

h(x, k)

such that
1. If

∑∞
n=0 R̃(x, n)n = ρκ(x), marginal of π on the first

component equal to π

2. if π̃Q = π̃, Markov kernel π-invariant



Invariant for P

Measure π̄ on X× N:

π(h) = κ−1
∞∑
n=1

∫
X
π̃(dx)R̃(x, n)

n−1∑
k=0

h(x, k)

such that
1. If

∑∞
n=0 R̃(x, n)n = ρκ(x), marginal of π on the first

component equal to π

2. if π̃Q = π̃, Markov kernel π-invariant



Strong Law of Large Numbers

Theorem 1
If for every ξ ∈ M1(X) and π̃ integrable function g,

lim
n→∞n−1

n−1∑
k=0

g(X̃k) = π̃(g), PQ
ξ − as

then, for every π̄ integrable function g,

lim
n→∞n−1

Kn−1∑
k=0

g(Xk)Nk = π̄(g), PP
ξ − as



Central limit theorem

Theorem 2

Under conditions on Q, π̃, take h : X→ R as solution of a
Poisson equation for Q, then

1√
n

n∑
i=1

(h(Xi) − π(h) )
PP
χ−law
⇝ N (0, σ2(h)),

where
σ2(h) = κσ̃2(ρh0) + κ−1σ̂2(h0, κ),

σ̃2(ρh0) is the variance obtained with Q,
σ̂2(h0, κ) :=

∫
X h

2
0(x)VarR̃x [N]π̃(dx),

VarR̃x [N] :=
∫
N R̃(x, dn)n2 −

(∫
N R̃(x, dn)n

)2
.



Central limit theorem

Theorem 2

Under conditions on Q, π̃, take h : X→ R as solution of a
Poisson equation for Q, then

1√
n

n∑
i=1

(h(Xi) − π(h) )
PP
χ−law
⇝ N (0, σ2(h)),

where
σ2(h) = κσ̃2(ρh0) + κ−1σ̂2(h0, κ),

σ̃2(ρh0) variance coming from instrumental chain, σ̂2(h0, κ)
variance from random number of repetitions



choosing R̃

σ̂ depends on the variance of R̃

VarR̃x [N] :=

∫
N
R̃(x, dn)n2 −

(∫
N
R̃(x, dn)n

)2

For N integer-value random variable such that E[N] = ρ <∞,

Var(N) ≥ {ρ} (1− {ρ})

LoBound met by N = ⌊ρ⌋ + S, where S ∼ Ber({ρ}) (used as
“shifted Bernoulli” kernel default)



Geometric ergodicity

Theorem 3

Under assumptions on Q and R̃, P has unique invariant
probability measure π̄ and there exist constants δ, βr > 1,
ζ <∞, such that for all ξ ∈ M1(X× N),

∞∑
k=1

δkdTV(ξP
k, π̄) ≤ ζ

∫
X×N

βn
r V(x) ξ(dxdn).



Pseudo-marginal version

▶ Cases when the density π not available but replaced by
(unbiased) estimate, leading to pseudo-marginal method.

[Andrieu and Roberts 2009]

▶ Extension: Importance Markov chain “pseudo-marginal
compatible” when unbiased estimate available
draw π̂(Xi) (with expectation π(x)) and

Ni ∼ ⌊π̂/π̃(Xi)⌋ + Be ({π̂/π̃(Xi)})

by enlarging the chain structure
▶ ... and even with unbiased estimate of π̃
▶ resulting in higher variance
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IMC in practice

Several factors to choose :
▶ auxiliary distribution π̃

▶ kernel Q
▶ value of κ



About κ

Several things to note
▶ κ is arbitrary if π and π̃ are unnormalized.
▶ the length of the final chain (Xi) grows linearly in κ for a

fixed length n chain (X̃i)

▶ hence, automatic tuning κ achieved by setting length of
chain

▶ For ESSκ := (
∑n

i=1 Ñi)
2
/∑n

i=1 Ñ
2
i and usual IS ESS:

ESSIS := (
∑n

i=1 ρ(X̃i))
2
/∑n

i=1 ρ(X̃i)
2

ESSκ −→
κ→∞ ESSIS

Warning: notion of ESS not accounting for convergence of
Markov chain
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Impact of κ
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Dimension = 5, mixture of 6 gaussians

Impact of κ on ESS and Markov chain length



Independent IMC and normalizing flows

▶ Target: π a d-dimensional distribution, with 2d modes,
concentrated around the sphere

π(x) ∝ exp

−1

2

(∥x∥ − 2

0.1

)2

−
d∑

i=1

log
(
e−

1
2
(
xi+3

0.6
)2 + e−

1
2
(
xi−3

0.6
)2
)

▶ Instrumental density and kernel: a normalizing flow T is
trained to approximate π: Q(x, .) = π̃(.) = T♯N (0, 1)

▶ Comparison with Metropolis–Hastings and Self
Regenerative MCMC

[Sahu and Zhigljavsky 2003; Gabrié et al 2022]
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Conclusion

▶ Versatile framework that applies to many different kernels
Q and auxiliary distributions π̃

▶ Extensions: adaptive version – multiple auxiliary chains –
delayed acceptance
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