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Part I: Adaptive Restore algorithm
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MCMUC regeneration

Reversibility attached with (sub-efficient) random walk
behaviour
Recent achievements in

[Bouchard-Co6té et al., 2018; Bierkens et al., 2019]

Link with regeneration
[Nummelin, 1978; Mykland et al., X, 1995]
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MCMUC regeneration

Reversibility attached with (sub-efficient) random walk
behaviour
Recent achievements in

[Bouchard-Coté et al., 2018; Bierkens et al., 2019]

Link with regeneration
[Nummelin, 1978; Mykland et al., X, 1995]

At , Markov chain starts again: future
independent of past

Scales poorly: regenerations recede exponentially with
dimension
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PDMP: Marketing arguments

Current (7) default workhorse: reversible MCMC methods

(incl. NUTS)
[Hoffman & Gelman, 2014]

Non-reversible MCMC algorithms based on piecewise
deterministic Markov processes perform well
empirically
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PDMP: Marketing arguments

Non-reversible MCMC algorithms based on piecewise
deterministic Markov processes perform well
empirically
Quantitative convergence rates and variance now available
Physics origins
[Peters & De With, 2012; Krauth et al., 2009, 15, 16]
geometric ergodicity for exponentially decaying tail target
[Mesquita & Hespanha, 2010]
ergodicity targets on the real line
[Bierkens et al., 2016a,b]
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Piecewise deterministic Markov process

PDMP sampler is a continuous-time, non-reversible, MCMC,
method based on auxiliary variables
1. empirically state-of-the-art performances
[Bouchard et al., 2017]
2. exact subsampling for big data
[Bierkens et al., 2017]
3. geometric ergodicity for large class of distribution
[Deligiannidis et al., 2017]
4. Ability to deal with intractable potential
log m(x) = [ Uy (x)u(dw)
[Pakman et al., 2016]
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Piecewise deterministic Markov process

Piecewise deterministic Markov process {z¢ € Z}i¢[p,00), With
three ingredients,

1. : between events, deterministic
evolution based on ODE

dze/at = @(z¢)

P A(t) = A(z4)
: At event time, T, state prior to T
denoted by z._, and new state generated by z; ~ Q(|z—).

[Davis, 1984, 1993]
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Implementation hardships

Main difficulties of implementing PDMP come from
1. Computing the ODE flow ¥: linear dynamic, quadratic
dynamic
2. Simulating the inter-event time mny: many techniques of
superposition and thinning for Poisson processes
[Devroye, 1986]
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Simulation by superposition plus thinning

Most implementations thru discrete-time schemes by sampling
Bernoulli B(a(z))
For

D(z) = (x+ve,v) and «(z) =1 Am(x+ ve)/mt(x)

sampling inter-event time for strictly convex U(-) obtained by
solving
t* = arg mtin U(x + vt)

and additional randomization
if there exists & such that o(®D(z)) > &(x, k),
accept-reject
When x(z) =1 /\ p(D(z))/p(z)
and p(-) = [ [; pi(-) then &(z,k) =], xi(z, k

[Bouchard etal,RQ7led=
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Restore process

Take {Yi}t>o diffusion / jump process on R¢ with infinitesimal
generator Ly and Yy ~
K with associated tour length

t
T = inf {tZO:J K(Ys)ds > &} with &~ Exp(1)
0

({th}tzo, tl)) > iid realisations inducing regeneration times

{Xt}t>0 given by:

o0
X¢ = Z ]I[Ti)TiJr])(t)Yil—)T‘l
i=0
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Restore process

Path of five tours of Brownian Restore with
m=N(0,1%2),n = N(0,2?) and C such that minyep k(x) =0,
with /IC = 200 and Ay = 1000. First and last output states
shown by green dots and red crosses
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Stationarity of Restore

Infinitesimal generator of {X}t>o
Laf(x) = Lyf(x) + k(x) j [f(y) — f0c)]p(y)dy

with adjoint L
Regeneration rate k chosen as

k(x) = Lin(x) /W(X) + Cu(x) /W(X)
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Restore sampler

Rewrite
T
7(x) 7(x) 7i(x)
with
K
C>0 and
Cu , large enough for x(-) > 0

Resulting Monte Carlo method called
[Wang et al., 2021]
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Restore sampler convergence

Given m-invariance of {Xi}t>0, Monte Carlo validation follows:

0)

o
Bnlf] = Expou | (XY /Byl 1)
0
and a.s. convergence of ergodic averages:
1 t
tJ f(Xs)ds — E[f] (2)
0

For iid Z; := ﬂiﬂ‘ f(Xs)ds, CLT

Th
vn (L £(X,)dx/ Ty, — Mﬂ) — N(0,03) (3)
where

0F = Exgep [(zo - T(‘”Eﬁ[ﬂ)z] /(Exowuh("ij,m
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Restore sampler convergence

Given m-invariance of {X{}t>0, Monte Carlo validation follows:

0)

l
Enlf] = EXONH[J F(Xs)dx] /Byl (1)
0
and a.s. convergence of ergodic averages:

1 t
tJ f(Xs)ds — Exlf] (2)
0
Estimator variance depends on expected tour length: prefer p
favouring long tours
[Wang et al., 2020]
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Minimal regeneration

, CTu™ corresponding to smallest
possible rate

leading to

() = 20V (Il

Frequent regeneration not necessarily detrimental, except when
when p is not well-aligned to 7, leading to wasted computation

[Wang et al., 2021]
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Constant approximation

When target 7t lacks its normalizing constant Z
n(x) = 7(x)/Z,

take U(x) := —logt(x) = log Z — log 7t(x)
E.g., when {Yi}t>0 Brownian, K function of VU(x) and AU(x)

() = 1 (IVUKI — AU(x))
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Constant approximation

When target 7 lacks its normalizing constant Z

n(x) = R(x)/Z,

take U(x) := —logmt(x) = log Z — log 7t(x)
In regeneration rate, Z absorbed into C
. p(x) _ nix) ~ p(x)
K(x) =K(x) + C—+= =k(x) + CZ= =Kk(x)+ C=
() = Rlx) + C o P = Rl o+ CZ 00 = k() + C L0
where C = CZ . Since
C= 1/Eu[ﬂ)

using n tours with simulation time T,

vV o0 psLx o erCE
WARWICK



Adapting Restore

defined by enriching underlying
continuous-time Markov process with regenerations at rate k™
from distribution p; at time t

a.s. convergence of stochastic
approximation algorithms for discrete-time processes on
compact spaces

[Benaim et al., 2018; McKimm et al., 2024]
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Adapting Restore

Initial regeneration distribution py and updates by addition of
point masses

He(x) = .
' St TV ax, (%) + 2mo(x), i N(1) >0,

where a > 0 constant and ¢ arrival times of inhomogeneous
Poisson process (N(t) : t > 0) with rate k= (X)

K™ (x) := [0V —k(x)]

Poisson process simulated by Poisson thinning, under (strong)
assumption
K™ :=supk™(x) >0
xeX
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Adaptive Brownian Restore Algorithm

t— 0B« 0,i0,X~ po.
while do
% ~ Exp(K*"), s ~ Exp(Ao), { ~ Exp(K ™).
if then
X~N(XT),t e t+T,u~U0,T1].
if then
if then
| X~ uo.
else
| X ~U(E) with probability t/(a + t), else X ~ po.
end
1141,
end

else if then
| X~N(X,s),t t+s, record X, t,1.
else
X~N(X Oyt —t—+u~Ulo,T1].
If u<k (X)/K™ then E + EU{X}.
end
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ABRA...cadabra

¥

i

Path of an Adaptive Brownian Restore process with
n=N(0,1),u0 =N (2,1),a =10. Green dots and red crosses
as first and last output states of each tour.

vy
WARWICK



Calibrating initial regeneration and parameters

Wo as initial approximate of 7, e.g., wo = Ny (0, 1) with 7t
pre-transformed

trade-off in choosing discrete measure dominance time:
smaller choices of a for faster convergence versus larger
values of a for more regenerations from g, hence better
exploration (range of a: between 10% and 10%)

Kt and K~ based on quantiles of K, from preliminary
MCMC runs

or, assuming 7t close to Gaussian, initial guess of K™ is d/2
and initial estimate for K* based on x? approximation
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Final remarks

Adaptive Restore benefits from global moves, for targets
hard to approximate with a parametric distribution, with
large moves across the space

Use of minimal regeneration rate makes simulation
computationally feasible and more likely in areas where 7
has significant mass

In comparison with wandom walk Metropolis, ABRA can
be slow but with higher efficiency for targets 7t with skewed
tails
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Part II: Importance Monte Carlo

arXiv:2207.08271 — Stoch Proc & Appli

vy oAUNE | PSLok
WARWICK




Rejection Markov chain

Mixing MCMC and rejection sampling :
1. Markov chain ()N(ihgigm from kernel Q targeting 7
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Rejection Markov chain

Mixing MCMC and rejection sampling :
1. Markov chain ()N(ihgigm from kernel Q targeting 7
2. With probability p(X;) € (0,1) (e.g. p=m/(Mm)),
proposal
3. Resulting in new Markov chain (Xi)1<i<n, (n < m)

)~(1 >22 X3 X4 >~( 5

Xi X2 X3
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Rejection Markov Chain (cont’d)

Corresponding to kernel S for (X;)

=Y B2 |p

k=1

K1
(Xk) (HU - P(Xi)))]
i1
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Rejection Markov Chain (cont’d)

Corresponding to kernel S for (X;)

k—1
p(Xi)h(Xu) (Hm — p(xi)))]

Sh(x) = i ES

k=1 i=1

Nice (recursive) equation

Sh{x) = Q(ph)(x) + Q((1 — p)Sh)(x)
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Invariant measure for S

If 1Q = 7, then

Jp(x)ﬁ(dx)S(x, dy) = p(y)7(dy)

vV o0 psLx o erCE
WARWICK



Invariant measure for S

If 1Q = 7, then

Jp(x)ﬁ(dx)S(x, dy) = p(y)7(dy)

Direct consequence :
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From rejection to importance
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From rejection to importance

From
X; X X3 X4 Xs
X X3 X3
to
X X, X3 X4 X5
X1 Xo X3 X4 Xs Xg
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Importance Markov chain

Case when p may take values above 1

Define pg(x) :=«

2&; for free parameter k
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Importance Markov chain

Case when p may take values above 1
Define pg(x) := K;%
Allow to elements of the chain

Accept Ni ~ R(Xi,.) copies of X, with R; kernel in N s.t.
EINi[Xi] = pu(X5), e.g.

N; = {pK(Xi)J + Be ({PK(XU})

for free parameter k
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Related works

(i) Self-regenerative chain: independent draws (Q(x,.) = 7t) and

N; =V - S copies where S ~ Geo(q), V ~ Be(p)
[Sahu and Zhigljavsky 2003; Gasemyr 2002]

(ii) Proposals in a semi-Markov approach
[Malefaki and Iliopoulos 2008]

(iii) Dynamic Weighting Monte Carlo and correctly weighted
joint density:
wif(x, w)dw o 71(x)

[Wong and Liang 1997; Liu, Liang, and Wong 2001]
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IMC algorithm

Algorithm 1: Importance Markov chain (IMC)
(0
Set an arbitrary Xo
for do
Draw >~(k ~ Q(kah -) and Nk ~ ﬁ(xk) )
Set Ne = Nk
while do
Set (X¢, Ng) (X, Ng—1)
Set £ — € +1
end

end
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Dynamics of the chain

If N >0 If N =0:
Xy — X1 = Xk Xy ——— Xyq1 ~ Q(le )
N #0 — Ny =N —1 Ny =0 N1 ~ R(Xip1,4)
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Formalisation of IMC

Define an (Xi, Ni) where X; and X; in
same space, and Nj € N (counting number of repetitions)
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Formalisation of IMC

Define an (Xi, Ni) where X; and X; in
same space, and Nj € N (counting number of repetitions)
Associated kernel

Ph(x,n) = ]I{n>1}h(x n—1)

where
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Invariant for P

Measure 7T on X x N:

0 —1

7i(h) = k! ZJ A(dx)R(x,n) Y h(x, k)
n=1 X

0

=

~
I
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Invariant for P

Measure 7T on X x N:

0 —1

7i(h) = k! ZJ A(dx)R(x,n) Y h(x, k)
n=1 X

0

=

~
I

such that
LIFYy 2, R(x,n)n = pg(x), of 7t on the first
component equal to 7

2. if mQ = 7t, Markov kernel 7t-
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Strong Law of Large Numbers

If for every & € My(X) and 7 integrable function g,

n—1
g(Xi) = 7(g), PY—as
k=0

then, for every m integrable function g,
Kn—1

lim n' Z g(Xx)Ny = 7t(g), IP’E —as
k=0

n—oo




Central limit theorem

Under conditions on Q, 7, take h: X — R as solution of a
Poisson equation for Q, then

i IP’ —law
> (X)) —m(h) )~ N(0,0%(h)),

i=1

where

o?(h) = k&% (phg) + k8% (ho, k),

62(phg) is the variance obtained with Q,
62(h0, = [y h§(x )VarR[N]7(dx),

Vark[ = [y R(x,dn)n? — (IN X dn)n)z.




Central limit theorem

Under conditions on Q, 7t, take h: X = R as solution of a
Poisson equation for Q, then
PP —law
(h(X)) =m(h) ) *~ " N(0,0%(h)),
1

1 n

1

where
o?(h) = k&?(pho) + k' 8% (o, k),

62(phg) variance coming from instrumental chain, 6%(hg, k)
variance from random number of repetitions




choosing R

6 depends on the variance of R

R(x,dn)n? — <J

~ 2
. R(x, dn)n)

Vark[N] = JN

For N integer-value random variable such that E[N] = p < oo,

Var(N) = {p} (1 —{p})

LoBound met by N = |p] + S, where S ~ Ber({p}) (used as
“shifted Bernoulli” kernel default)
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Geometric ergodicity

Under assumptions on Q and R, P has unique invariant
probability measure T and there exist constants 0,y > 1,
( < 00, such that for all & € M;(X x N),

XxN

Z §%dqy (EP*, ) < cJ BMV(x) &(dxdn).
k=1
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Pseudo-marginal version

Cases when the density 7 not available but replaced by
(unbiased) estimate, leading to method.
[Andrieu and Roberts 2009]

Importance Markov chain “pseudo-marginal
compatible” when unbiased estimate available
draw R(X;) (with expectation 7t(x)) and

Ni ~ [#/7t(Xi)] + Be ({#/7(X1)})

by enlarging the chain structure
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Pseudo-marginal version

Cases when the density 7 not available but replaced by
(unbiased) estimate, leading to method.
[Andrieu and Roberts 2009]

Importance Markov chain “pseudo-marginal
compatible” when unbiased estimate available
draw R(X;) (with expectation 7t(x)) and

Ni ~ [#/7t(Xi)] + Be ({#/7(X1)})

by enlarging the chain structure
. and even with unbiased estimate of 7
resulting in higher variance
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IMC in practice

Several factors to choose :
auxiliary distribution 7
kernel Q

value of k
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Several things to note

k is arbitrary if 7w and 7t are unnormalized.
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Several things to note

k is arbitrary if 7w and 7t are unnormalized.

the length of the final chain (Xy) in k for a
fixed length n chain (X;)

hence, automatic achieved by setting length of
chain
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Several things to note

k is arbitrary if 7w and 7t are unnormalized.

the length of the final chain (Xy) in k for a
fixed length n chain (X;)

hence, automatic achieved by setting length of
chain

For ESS, == (Y[ ! N /¥, NZ and usual IS ESS:
ESSig == (Z‘L 1 p /Zl 1 p

ESSK — ESSIS
K—00

: notion of ESS not accounting for convergence of
Markov chain
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Impact of k

Dimension = 5, mixture of 6 gaussians

0.0020 20 100
0.0015 15 10°
£ < c
% o
0.0010 10 102
1

0.0005 54 0

. 100
0.0000 - - 0 - T T T T T

1073 107 10° 10? 10° 10° 102 10°
Ma/n K K

Impact of k on ESS and Markov chain length
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Independent IMC and normalizing flows

Target: 7 a d-dimensional distribution, with 2¢ modes,
concentrated around the sphere

2 . X —
(%) o< exp —% <”XH _2) — Zlog (e;(&?)z + el(S.:JZ)

Instrumental density and kernel: a normalizing flow T is
trained to approximate m: Q(x,.) = 7t(.) = TpNV(0, 1)
Comparison with Metropolis—Hastings and Self
Regenerative MCMC

[Sahu and Zhigljavsky 2003; Gabrié et al 2022]
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Conclusion

Versatile framework that applies to many different kernels
Q and auxiliary distributions 7

Extensions: adaptive version — multiple auxiliary chains —
delayed acceptance
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