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Stochastic optimization problems with constraints

Stochastic nonlinear optimization problem with deterministic constraints:

min f(x) = E[f(x;£)]

xeRd

sit. ce(x)=0
0

N

cz(x)

» f:R? — R is the stochastic objective
» ce : RY > R™ are the deterministic equality constraints
» c7 : RY - R’ are the deterministic inequality constraints

We do not have access to f and its derivatives

Have access to i.i.d. samples {¢;}; from P and the realizations {f (- ;&;)}; that
we use to estimate f and its derivatives



Applications in statistical machine learning

Finite sum objective
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> distribution P is uniform over feature-outcome pairs {&; = (yi, zi)}/—:



Applications in statistical machine learning

Finite sum objective
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> distribution P is uniform over feature-outcome pairs {&; = (yi, zi)}/—:

Constrained maximum likelihood optimization

Nagaraj and Fuller [1991], Dupacova and Wets [1988], Shapiro [2000]

> constraints encode some prior knowledge on the model parameters



Applications in statistical machine learning

Finite sum objective
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> distribution P is uniform over feature-outcome pairs {&; = (yi, zi)}/—:

Constrained asso Gaines et al. [2018]

n

1
in = — A bjectto Ax<b
min — Z(y z/x)> + \|x|, subjectto Ax

i=1
> see also James et al. [2020]

minf(x) + A|x||, subjectto Ax<b
> portfolio estimation

> monotone curve estimation
> generalized lasso



Applications in statistical machine learning

Finite sum objective

:x\H
”M
Bl—l

72 Xyla

> distribution P is uniform over feature-outcome pairs {&; = (yi, zi)}/—:

Constrained deep neural networks

Nandwani et al. [2019], Ravi et al. [2019], Prach and Lampert [2022]

> constraints improve generalization performance
> constraints encode expert's knowledge
> constructing Lipschitz networks



Applications in statistical machine learning

Finite sum objective

:x\H
”M
Bl—l

72 Xyla

» distribution P is uniform over feature-outcome pairs {&; = (yi, zi)}/—

Constrained deep neural networks

Nandwani et al. [2019], Ravi et al. [2019], Prach and Lampert [2022]

> constraints improve generalization performance
> constraints encode expert's knowledge
> constructing Lipschitz networks

Machine learning with physics constraints

Willard et al. [2020], Karniadakis et al. [2021]
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Other applications and related problems

Fairness constraints

Chen et al. [2022]

Optimal control

Kupfer and Sachs [1992], Betts [2010]

Nonlinear equality-constrained dynamic program

Na et al. [2021a]

PDE-constrained optimization

Rees et al. [2010]

Network flow

Bertsekas [1998]

Safe reinforcement learning

Shalev-Shwartz et al. [2016], Yu et al. [2019]



Unconstrained optimization



Gradient descent

e

» Vf:R" — R" is Lipschitz continuous with constant L

Gradient descent: choose an initial point xo € R”, repeat:

X1 = Xk — aVF(xi), k=1

Stop at some point



Gradient descent
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Gradient descent

}Yf(m

Tk
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Gradient descent

2 ) + V@) T (@ — 2 + L2 — 2413

T
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Gradient descent

Theorem:
If a € (0,2/L), then 33;° [ [Vf(xk)|3 < o0, which implies {Vf(xc)} — 0.

L
F(xi1) — F(x) < V()T (kg1 — xe) + 5 lxer = i3
L
= —a||VF (x| + 5042HVf(Xk)H§

1
< 50l V()3

13
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Stochastic gradient descent

min f(x) = E[f(x;&)]

xeRd

» Vf:R"— R" is Lipschitz continuous with constant L

Stochastic gradient descent: choose an initial point xo € R"” and stepsizes
{ax}, repeat:

Xk+1 = Xk — QkBk, k=1

> where Eq[gk] = VI (xk)

Stop at some point

16



Stochastic gradient descent

Not a descent method

Flxien) = () < VF00) T (xker = x0) + 5 xieen — el

L
~au V() g+ 5 odexl?

= Eu[f (xis1)] = (k) < —au| VF(x)[5 + LakEk[Hng ]

> eventual descent in expectation
Theorem:

If Ex[|gx — V£ (x)|3] < M, then

1 k
; [kEfojb <o(m)

w-0(3)  —E [Zl ﬁaﬂvamﬁ] Ny

j=1% j—1
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Stochastic gradient descent
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» stochastic line search Paquette and Scheinberg [2020]



Goal

Consider equality constrained stochastic optimization problem:

min f(x) =E[f(x;&)]

xeRd

stt. ¢(x)=0

Develop an adaptive stochastic procedure based on sequential quadratic
optimization.

19



Related approaches

Consider equality constrained stochastic optimization problem:

min f(x) = E[f(x;£)]

xeRd

sit. ¢(x)=0

Penalty based methods

Ravi et al. [2019], Nandwani et al. [2019]

Projected stochastic first- and second-order methods

Nemirovski et al. [2009], Bertsekas [1982]

> projection to the null space may not be easily computed

20



Related approaches

Stochastic optimization with constraints

> ¢1-StoSQP — random projection used to select stepsize Berahas et al. [2021b]
> fully stochastic setup
> rank-deficient Jacobians Berahas et al. [2021a], inexactly solved Newton systems curtis
et al. [2021], SVRG acceleration Berahas et al.
> line-search StoSQP nNa et al. [2022] , inequalities Na et al. [2021b]
» random model setup

Stochastic optimization without constraints

> TRish, a fully stochastic trust-region method for unconstrained problems curtis et al.
[2019], Curtis and Shi [2020]
> fully stochastic setup
> random model setup

> stochastic line search paquette and Scheinberg [2020]
> trust region methods Bandeira et al. [2014], Chen et al. [2017], Blanchet et al. [2019]

21



Outline of the talk

SQP in a deterministic setting
Adaptive Trust Region Stochastic SQP
Extensions

Conclusion

22



Sequential quadratic programming (SQP)

Consider: min,cgs f(x) subject to c(x) =0

» the Lagrangian function £(x,A) = f(x) + AT ¢(x)

23



Sequential quadratic programming (SQP)

Consider: min,cgs f(x) subject to c(x) =0

» the Lagrangian function £(x,A) = f(x) + AT ¢(x)

SQP aims at finding a KKT point (x*, A*) that satisfies (G = V' ¢)
VAL A (V) + GT(x)A*\ _ (0
VAL(x* X)) c(x*) —\0
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Sequential quadratic programming (SQP)

Consider: min,cgs f(x) subject to c(x) =0

» the Lagrangian function £(x,A) = f(x) + AT ¢(x)

SQP aims at finding a KKT point (x*, A*) that satisfies (G = V' ¢)
VAL A (V) + GT(x)A*\ _ (0
VAL(x* X)) c(x*) —\0

Alternative view point

min  f(x) + V' f(x)Ax + %(AX)TV)%L(X, A)Ax

AxeRd

sit. ¢(x)+ G(x)Ax =10
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Sequential quadratic programming (SQP)

Consider: min,cgs f(x) subject to c(x) =0

» the Lagrangian function £(x,A) = f(x) + AT ¢(x)
SQP aims at finding a KKT point (x*, A*) that satisfies (G = V' ¢)
VAL A (V) + GT(x)A*\ _ (0
VAL(x* X)) c(x*) —\0
Alternative view point

min  f(x) + V' f(x)Ax + 1(Ax)TV§L‘,(x, A)Ax
AxeRd 2

sit. ¢(x)+ G(x)Ax =10

The resulting Newton system

By G;Z- Axy _ VxLi

Gk 0 AAk - Ck
» By is an approximation of the Lagrangian Hessian V2L,
> Ax is the search direction

23



Trust-region sequential quadratic programming (TR-SQP)

min V' filAxy + %(Axk)TBkAxk

Ax,eRd

st o+ GAxk =0, [|Axi| < A«

> Axy is the trial step at xx; Ax > 0 is the trust-region radius

-... Trust region
Line search direction

contours of m;

Trust region step
contours of f

Figure from Nocedal and Wright [2006]
24



Why trust-region method?

_ Trust region

Line search direction

Trust region step (

contours of f

Figure from Nocedal and Wright [2006]
Computes the search direction and stepsize jointly
> can yield a more significant reduction in f than line search methods
Stronger ability to explore negative curvatures of the Hessian matrix
> Hessian modifications can be avoided
The trust-region constraint helps normalize steps

> more robust to ill-conditioning

25



Outline of the talk

SQP in a deterministic setting
Trust-Region Stochastic SQP
Extensions

Conclusion
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Trust-region stochastic SQP (TR-StoSQP)

TR-StoSQP subproblem at xx

min  gkAxk + %(Axk)TBkAxk

AxyeRd

s.t. ¢k + GkAx, =0, HAX/(H < Ay

In the stochastic setting, f(x), Vf(x), V2f(x) need to be estimated

> Z(x) is the estimate of Vf(x)
> based on one observation in this talk (fully stochastic setting)

> overlined quantities represent estimates

By is an approximation of the Lagrangian Hessian V2.,

> By is deterministic conditional on x

Fully Stochastic Trust-Region Sequential Quadratic Programming for Equality-Constrained
Optimization Problems
Yuchen Fang, Sen Na, Michael Mahoney, Mladen Kolar
SIAM Journal on Optimization
https://arxiv.org/abs/2211.15943
27


https://arxiv.org/abs/2211.15943

Trust-region methods for problems with constraints

Infeasibility of the subproblem

{Bxi e Rk + GAxik = 0} {Ax e RY: |Axi| < Ak} = F

> subproblem is unsolvable

Reason: trust-region radius is too short

> increasing the trust-region radius would violate the spirit of the method

Solution: relax the linearized constraints

28



How to relax linearized constriants?

Replace linearized constraints by inequalities

Celis et al. [1985], Powell and Yuan [1990]

> ek + GeAxk| < Ok for some O > 0
> TR-SQP subproblems are hard to solve due to inequalities

Maintain equality constraints but conduct a step decomposition

Vardi [1985], Byrd et al. [1987], Omojokun [1989]

> no clear guidance for choosing involved user-specified parameters

We propose an adaptive relaxation technique

» extends the method in Byrd et al. [1987]
> adaptive without the need for user to specify parameters

29



Adaptive relaxation technique

The trial step Axy is decomposed as Axy = wy + ti

» the normal step wy € im(G/)
> the tangential step tx € ker(Gk)

30



Adaptive relaxation technique

The trial step Axy is decomposed as Axy = wy + ti

» the normal step wy € im(G/)
> the tangential step tx € ker(Gk)

Normal step
Vi = —GkT[GkaT]ilck

> solves ¢k + Gxvi = 0 without the trust-region constraint
> the trust-region may prevent us from setting wy = v
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Adaptive relaxation technique

The trial step Axy is decomposed as Axy = wy + ti

» the normal step wy € im(G/)
> the tangential step tx € ker(Gk)

Normal step
Vi = —GkT[GkaT]ilck
> solves ¢k + Gxvi = 0 without the trust-region constraint
> the trust-region may prevent us from setting wy = v
> wy = vk for a scalar v, € (0, 1]
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Adaptive relaxation technique

The trial step Axy is decomposed as Axy = wy + ti

» the normal step wy € im(G/)
> the tangential step tx € ker(Gk)

Normal step
Vi = —GkT[GkaT]ilck
> solves ¢k + Gxvi = 0 without the trust-region constraint
> the trust-region may prevent us from setting wy = v
> wy = vy for a scalar v, € (0,1]

Tangential step
ti = Peuy for some vector uy € R?

» Py =1 — G/ [GkG] |7 Gy is the projection matrix to the null space of G
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Adaptive relaxation technique

The trial step Axx = ykvi + Prug

How to chose 7« and uy so that ||Axg| < Ax?

31



Adaptive relaxation technique

The trial step Axx = ykvi + Prug
How to chose 7« and uy so that ||Axg| < Ax?

Adaptively decompose the trust-region radius into two segments

A, — el . A, — HV_xﬁkHAk
IV Lkl IV Lkl
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Adaptive relaxation technique

The trial step Axx = ykvi + Prug
How to chose 7« and uy so that ||Axg| < Ax?

Adaptively decompose the trust-region radius into two segments

Ak = H_CkH Ak and Ak = HV_XLI(H
IV L] IV L]

Choose Yx: Yk = min {Ak/”Vkuv 1}

Ay

31



Adaptive relaxation technique

The trial step Axx = ykvi + Prug
How to chose 7« and uy so that ||Axg| < Ax?

Adaptively decompose the trust-region radius into two segments
VL
[9xLil o,
IV L

H_Ck H A and Ak =
IV Lkl

Ay =

Choose Yx: Yk = min {Ak/HVkuv 1}

Compute uy: Approximately solve
1
min (uk) = & Pruk + - uj PiBiPyuy  st.
uke]Rd 2

> needs to satisfy the Cauchy reduction

luk] <

A

k

31



Fully stochastic trust-region SQP (TR-StoSQP)

Input:

> sequence {Bx}x S (0,1] — related to trust-region radius
» ¢ > 0 — controls the control parameters

> p—1 — the initial merit parameter

> p > 1 — controls the merit parameter update

Algorithm: Until convergence, repeat:

1. Generate control parameters
2. Estimate the gradient and generate the trust-region radius
3. Compute the trial step and update the merit parameter

32



Fully stochastic trust-region SQP (TR-StoSQP)

Step 1: Generate control parameters

> Generate a deterministic matrix Bx (conditional on xy)

> approximation to the Hessian of the Lagrangian V2.,

33



Fully stochastic trust-region SQP (TR-StoSQP)

Step 1: Generate control parameters

> Generate a deterministic matrix Bx (conditional on xy)

> approximation to the Hessian of the Lagrangian V2.,

> Control parameters:

> _ H _1 _6
e = Comin { ||Bku’_ucku}
> 7k = Lyrk + Lo klik—1 + | Bll

> = Bk
k= Znp i +6C

1
> Mok =M,k — 5671,k
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Fully stochastic trust-region SQP (TR-StoSQP)

Step 1: Generate control parameters

> Generate a deterministic matrix Bx (conditional on xy)

> approximation to the Hessian of the Lagrangian V2.,

> Control parameters:

> _ H _1 _6
Mk Cmm{"BkH’_HGkH}
> 7k = Lyrk + Lo klik—1 + | Bll

> = Bk
k= Znp i +6C

1
> Mok =M,k — 5671,k

Note: Lyf.k, Lgk are (estimated) Lipschitz constants of Vf(x), G(x) at xx

» can be estimated curtis and Robinson
> can be replaced by universal quantities Ly, Lg such that
Lvrk < Lvr, Lok < Lg

33



Fully stochastic trust-region SQP (TR-StoSQP)

Step 2: Estimate the gradient and generate the trust-region radius

» Estimate gradient gx = VF(xx; ) and compute VL

34



Fully stochastic trust-region SQP (TR-StoSQP)

Step 2: Estimate the gradient and generate the trust-region radius
> Estimate gradient g« = VF(xx; &) and compute YV Lk
» Compute the Lagrangian multiplier Ax = —[Gx G/ | Gi&x

> Compute the trust-region radius is generated
ke VL if [VL| € (0,1/m)
Ay = ak if | VLl € [1/mk: 1/m2,6]
ke VL if [ VL € (1/m2,4, 0).
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Fully stochastic trust-region SQP (TR-StoSQP)

Step 2: Estimate the gradient and generate the trust-region radius
> Estimate gradient g« = VF(xx; &) and compute YV Lk
» Compute the Lagrangian multiplier Ax = —[Gx G/ | Gi&x

> Compute the trust-region radius is generated
ke VL if [VL| € (0,1/m)
Ak = { ax if [VLi| € [1/mk: 1/m2.k]
ke VL if [ VL € (1/m2,4, 0).
Note:
> When IV Lk is small, Ak < v

> close to a first-order stationary point; require careful steps
> different from deterministic setting — trust-region constraint is inactive when
iterates are close to a stationary point to maintain a fast convergence rate
> ensure that the stationary point is not skipped due to errors in estimation
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Fully stochastic trust-region SQP (TR-StoSQP)

Step 2: Estimate the gradient and generate the trust-region radius
> Estimate gradient g« = VF(xx; &) and compute YV Lk
» Compute the Lagrangian multiplier Ax = —[Gx G/ | Gi&x

> Compute the trust-region radius is generated
ke VL if [VL| € (0,1/m)
Ak = { ax if [VLi| € [1/mk: 1/m2.k]
ke VL if [ VL € (1/m2,4, 0).
Note:
» When |V Ly is small, Ax < ax

> close to a first-order stationary point; require careful steps
> different from deterministic setting — trust-region constraint is inactive when
iterates are close to a stationary point to maintain a fast convergence rate
> ensure that the stationary point is not skipped due to errors in estimation
» When VL] is large, Ak > a
> far from a stationary point — allow for larger improvement
34



Fully stochastic trust-region SQP (TR-StoSQP)

Step 3: Compute the trial step and update the merit parameter

> Compute the trial step using the adaptive relaxation technique

Axy = YkVi + Pruy
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Fully stochastic trust-region SQP (TR-StoSQP)

Step 3: Compute the trial step and update the merit parameter

> Compute the trial step using the adaptive relaxation technique
Axy = YkVi + Pruy

> Update the iterate xx+1 = xx + Axk
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Fully stochastic trust-region SQP (TR-StoSQP)

Step 3: Compute the trial step and update the merit parameter

» Compute the trial step using the adaptive relaxation technique
Axy = YkVi + Pruy
> Update the iterate xx+1 = xx + Axk
> Set jix = jik—1. Compute the estimated predicted reduction
_ 1 -
Pred, = 8! Axk + EAkaBkAxk + k(| ek + GeAxil| — [e])
Update fix < ppik until

_ - 1 . 1 - .~
Predi < —[[VaLil Ak — Sl Aw + EHBkHAi + 1Bl AxA
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Fully stochastic trust-region SQP (TR-StoSQP)

Step 3: Compute the trial step and update the merit parameter

» Compute the trial step using the adaptive relaxation technique
Axy = YkVi + Pruy
> Update the iterate xx+1 = xx + Axk
> Set jix = jik—1. Compute the estimated predicted reduction
_ 1 -
Pred, = 8! Axk + EAkaBkAxk + k(| ek + GeAxil| — [e])
Update fix < ppik until

_ - 1 . 1 - .~
Predi < —[[VaLil Ak — Sl Aw + EHBkHAi + 1Bl AxA

Note:

> iterates are always updated
> the merit parameter is used for generating the trust-region radius
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Discussion of TR-StoSQP

Trust-region radius is constructed based on

> input {8«} € (0,1]
> control parameters {n«}, {n2,}, {7k}
> current KKT residual |V L]

Control parameters are automatically computed in each iteration of TR-StoSQP
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Discussion of TR-StoSQP

Trust-region radius is constructed based on

> input {8«} € (0,1]
> control parameters {n«}, {n2,}, {7k}
> current KKT residual |V L]

Control parameters are automatically computed in each iteration of TR-StoSQP

Compared with Curtis and Shi [2020]

> upper bound on S is simplified to be 1

» TR-StoSQP does not require {1}, {n2,«} as input

> growth condition on the gradient estimate

> for a decaying {8«}, we do not require the gradient error to decay
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Discussion of TR-StoSQP

Trust-region radius is constructed based on

> input {8«} € (0,1]
> control parameters {n«}, {n2,}, {7k}
> current KKT residual |V L]

Control parameters are automatically computed in each iteration of TR-StoSQP

Compared with Curtis and Shi [2020]

> upper bound on S is simplified to be 1

» TR-StoSQP does not require {1}, {n2,«} as input

> growth condition on the gradient estimate

> for a decaying {8«}, we do not require the gradient error to decay

An £> merit function is used to balance objective value and constraint violation

£ﬁ(x) = f(X) — finf + ,[TLHC(X)H,

> the merit function is not explicitly used in the algorithm
> the stochastic merit parameter is adaptively chosen in each iteration
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Convergence theory

Assumption:

the iterates x lie in some open convex set Q2
f and c are continuously differentiable; f is bounded below by fi¢
V£ and the Jacobian G(x) are Lipschitz continuous

>
>
>
» Bl < ke, |ek|| < ke, |V < kvr, k16 | < GG < ka1




Convergence theory

Assumption:

the iterates x lie in some open convex set Q2
f and c are continuously differentiable; f is bounded below by fi¢
V£ and the Jacobian G(x) are Lipschitz continuous

>
>
>
» Bl < ke, |ek|| < ke, |V < kvr, k16 | < GG < ka1

Assumption:

There exists a stochastic K < oo and a deterministic constant fi, such that for
allk>K,ﬁk=ﬁ,—<<ﬁ.

> this assumption is satisfied if gx is bounded
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Convergence theory

Assumption:

the iterates x lie in some open convex set Q2
f and c are continuously differentiable; f is bounded below by fi¢
V£ and the Jacobian G(x) are Lipschitz continuous

>
>
>
» Bl < ke, |ek|| < ke, |V < kvr, k16 | < GG < ka1

Assumption:
There exists a stochastic K < oo and a deterministic constant fi, such that for

all k> K, fix = fig <J.

> this assumption is satisfied if gx is bounded

Assumption:

The estimate gk is an unbiased estimator of Vfi, E[gk | x«] = V.
There exist constants M, > 1, Mg 1 > 0 such that

E[| Vi — & | x] < Mg + Mg 1(fi — fine).
37



Global convergence

Theorem: Suppose that Gk = 8. If Mg1 =0, then

4 471 M,

K—oo 4T1 Mg

2
- < — (x=
o 2 ElVLdT < mmon R Fre XRe) +

NminX|
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Global convergence

Theorem: Suppose that Gk = 8. If Mg1 =0, then

4 471 M Koo 4T1M,
< L () + M 1M
nmlnalﬁK NminCY) NminX|

Theorem: Suppose that 3;° ; 8x = o0 and >;° , 87 < . Then

) 1 K+K
E| ) AlVE | <o and  lim S 3 ﬁkE[HvzkHQ]:
k=K+1 -* Zk K41 kk:R+1
In addition,

lim |[VLk| =0 almost surely.
k—o0

38



Empirical setup

£1-StoSQP (Bershas et al. 2021)
»71=1e=10°%06=05¢,=1,6=10
TR-StoSQP
»(=10,ic1=1,p=15

Hessian approximation
> |dentity matrix (Id)
» Symmetric rank-one (SR1) update
> Estimated Hessian (EstH)

> Averaged Hessian (AveH)

Choices for 5«

» Two constant i € {0.5,1}
» Two decaying Sk € {k~°°, k~08}

39



CUTEst test set

Constrained nonlinear optimization problems

> BT4, BT5, BT8, BT9, MARATOS, HS39, HS40, HS42, HS78, HS79
» Singularity of GxG, is not reported for all iterations
> The initialization of primal-dual variables is given by CUTEst package

Stochastic oracle

» the estimator of V£ is drawn from N (Vfy,o?(1 +117))
» the estimator of (V2£);; is drawn from N ((V?£)i;,0?)
» 0% € {1078,107%,1072,107}}.

The stopping criterion

[VLi| <107* OR k> 10°

We perform 5 independent runs

40



KKT residuals

B TR-SQP-Id [l TR-SQP-SR1 [ TR-SQP-EstH [ TR-SQP-AveH [ElIL1-SQP

10° 10° )
_ _ ]
g 2 g 2 (] ;i
310 310 :
7] 7]
] N o) H
Em‘ ----- ;10““--‘ e8eg !
| i i
X400 1 X 00 1
| |
- . . .1 8 . i
10 1e-8 1e-4 1e-2 1e-1 10 1e-8 1e-4 1e-2 1e-1
o? o?
10°
P E}
5" S
7] 7]
o] o)
o0 o4 o
X X
10 1 10
|
108 : 108
1e-8 1e-4 1e-2 1e-1 1e-8 1e-4 1e-2 1e-1
2 02
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Constrained logistic regression

N
min f(x) = % Z log <1 + efy"(sz’O) st. Ax=b
i=1

xeRd

LIBSVM collection

> austrilian, breast-cancer, diabetes, heart, ionosphere, sonar,
splice,svmguide3d

> The initial iterate is set as all one vector

> One sample is selected from the given N samples in each iteration

» AcR**? and be R®

> each entry follows a standard normal distribution
> A has full row rank in all problems

Stopping criterion
[VLk| <107* OR 20 epochs

We perform 5 independent runs

42



KKT residual

10°

KKT Residual

10

S

I TR-SQP-Id [l TR-SQP-SR1 ] TR-SQP-EstH [ TR-SQP-AveH [llL1-SQP

05

B

constant [k

KKT Residual

10°

aa

= D ] .
s=b46
Be=k*
decaying S«

s=6.8
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Outline of the talk

SQP in a deterministic setting
Adaptive Trust Region Stochastic SQP
Extensions

Conclusion

44



Inequality constraints

Consider stochastic nonlinear optimization problem:
min f(x) = E[f(x;&)]
xeRd

sit. ce(x)=0
cr(x) <0

Additional challenges:

> inequality constrained (nonconvex) quadratic programs
> SQP generates a descent direction of augmented Lagrangian only in a
neighborhood of a KKT point

Proposed solutions:

> active-set SQP framework
> subproblem is an equality constrained QP
> the scheme uses a backup search direction
> use SQP direction if it provides a descent direction
> use a regularized Newton step or a steepest descent step of augmented
Lagrangian, otherwise

Inequality Constrained Stochastic Nonlinear Optimization via Active-Set Sequential Quadratic Programming
Mathematical Programming
https:/ /arxiv.org/abs/2109.11502

45
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Randomized solvers for the Newton system

Solving the Newton system impractical for large scale prob

lems

Solve the Newton system inexactly via randomized sketching

S1 T By GZ— éxk _ 51 T VxLy

) G, 0 AN Sy Ck
—— —— —
dx (n+m) (n+m)x (n+m) dx1

)

Construct Applying randomized sketching until Is it a descent direction? YES Accept
Py > Il < o 9L > (©5) (3p) = -mtwer [P]Gendr
A
NO
v

Update the parameter as

O = O /vt Mk gl Mk & ma/v

Main results

> Almost sure global convergence guarantee.
> Almost sure local linear convergence guarantee.

Constrained Optimization via Exact Augmented Lagrangian and Randomized lterative Sketching

ligee Hong, Sen Na, Michael Mahoney, Mladen Kolar
ICML 2023




Outline of the talk

SQP in a deterministic setting

Adaptive Stochastic SQP with line search
Adaptive Trust Region Stochastic SQP
Extensions

Conclusion
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Conclusion

Consider equality constrained stochastic optimization problem:

min f(x) = E[f(x;¢)]

xeRd

sit. ¢(x)=0

> Adaptive stochastic SQP method
> trust-region for fully stochastic setting

> Almost sure global convergence
> Exciting numerical results
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Future work

> local convergence analysis
> sample complexity analysis
» finding second order stationary points

> distributed optimization (federated learning) with constraints
> safe RL

> statistical inference
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Thank you!

An Adaptive Stochastic Sequential Quadratic Programming with Differentiable Exact
Augmented Lagrangians
https://arxiv.org/abs/2102.05320

Inequality Constrained Stochastic Nonlinear Optimization via Active-Set Sequential
Quadratic Programming
https://arxiv.org/abs/2109.11502

Fully Stochastic Trust-Region Sequential Quadratic Programming for
Equality-Constrained Optimization Problems
https://arxiv.org/abs/2211.15943

Constrained Optimization via Exact Augmented Lagrangian and Randomized lterative
Sketching
https://arxiv.org/abs/2305.18379
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/1 penalized AdapSQP

The ¢ penalized merit function

Lu(x) = £(x) + ple(x)]1

The condition in the first step

Ak = {l8x = V| < Kgrad - @l VL }

The search direction (Axk,AAk) is obtained by solving

Bk GkT éxk _ vx‘ck

G 0 AN ) Ck
The penalty parameter is updated as jix = g Axi/{(p — 1)|lck|1}
The condition in the third step

B = {12k, — Lh | v |23, — £3,] < —rrad (& Bxe — el ) |

P P

51



Implementation details (I)

¢, SQP in Berahas et al. [2021b)]

»71=1€e=10°%06=05£¢,=160=10
> the Lipschitz constant is estimated around the initialization

> the stepsize related sequence {fk}«
> constant case: Sx = {0.01,0.1,0.5,1}
> decaying case: B = {1/k%6,1/k0-%}

non-adaptive stochastic SQP

> setup as above

> the stepsize sequence
» ay = {0.01,0.1,0.5,1}
>y = {1/K0,1/k09)
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Implementation details (I1)

adaptive stochastic SQP

> v =0.001 — make £, similar to standard augmented Lagrangian
> Qo = max = 1.5 — the selected stepsize may be greater than 1

> o=¢€ =1

> Kgrad = 1, Pgrad = pPr = 0.1, kr = B/(4Oémax) = 0.05

> Cgrad = Cf = {1,5, 10,50}

> p=12

» B8 = 0.3 — a (nearly) middle value of interval (0, 0.5)

> a fast local rate in deterministic case Lucidi [1990]

adaptive stochastic SQP

> same as above, but without v
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Comment on Adaptive SQP

Note that the dual search direction is A\y.
» if By ~ V2L and (xx, Ax) is close to a KKT point, then A\, ~ AN,

» if an iterate is far from a KKT point or Bx % V2L, AX and Ay are
significantly different

We want a dual direction and Axy to be a descent direction of £ , v > 0,

v
> 0 sufficiently large

> sufficient condition: Iim0 GkG] Ak () = —(GkVxLk + M Axy)
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Non-adaptive stochastic SQP
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Non-adaptive stochastic SQP
Notation:
B = VF(xii€s), Vil =8+ G Ay,

Hie = V2F(xiii €), ViLi = Fic+ Y (M) V2¢i(xi),
j=1
= _ (o2 S . ek 2 S . ek
Te = (P21 (xi) VLo Ak €5), -+ V2em(x) TxLxks i 66))
My = V2L Gl + T
The stochastic search direction (Ax, AXy):
B GI\ (Bxk\ _ _ (VL
Gy 0 ANy Ck

Gk Gl AN, = — (G Vx Ly + M Axy)

> By, Gk, cx are deterministic given (xx, Ax)

Xk+1\ _ [ Xk éxk
(i) = () = (&%)

> {ak}: a prespecified stepsize sequence

Next iterate:
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Convergence theory

Assumption:

the iterates (xx, Ax) lie in a convex compact set X' x A
f and c are thrice continuously differentiable over X
the Jacobian G(x) = V7 ¢(x) has full row rank over X

>
>
>
» x"Bix = vpu|x|? for all x e {x: Gix =

| < ke

Lemma: There exists a constant Ty > 0 such that

E Axk _ AXk
i | \AXS |~ \aa )’

E Axk 2 AXk
€k || \AX A,

) |
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Convergence theory

Applying Taylor's expansion and Lemma:

-
k+1 K VxLyw (
ggygk [E L1< L+ o (Vxﬁz,u

Axy
ANy

Tomu v
)+

Tonens i f)(

Ax
A

I

g
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Convergence theory

Applying Taylor's expansion and Lemma:

T T
1 k VxLy, A OH,CL v
ggygk (£ k+1] < Ly, + ok (Vkﬁl“ ) (A;i) + ‘
v

If w > [, then

k T
VxLy v Axy < _S Axy 2
VaLk AXg ) G VxLy

v

Tonens i f)(

Ax
A

I

g
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Convergence theory

Applying Taylor's expansion and Lemma:

T T 2 2
k+1 k VL Ax ORL, ., O Ax
By bt < cho o (orgh ) (B3) + 5=l (&) +v
If w > [, then

T
Vx ‘Cu v Axy < _S Axy 2
VAEk AXg ) GV xLy

v

From the system that gives the search direction:

2
Axy 2 < 3NM Ax 2
Ay S GV Ly
k16
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Convergence theory

Applying Taylor's expansion and Lemma:

T T 2 2
k+1 k VL Ax ORL, ., O Ax
By bt < cho o (orgh ) (B3) + 5=l (&) +v
If w > [, then

T
Vx ‘Cu v Axy < _S Axy 2
VAEk AXg ) GV xLy

v

From the system that gives the search direction:
2
Axy 2 < 3'{M Ax 2
ANy =2 Gk VxLy
1,6
Then

~ 3TOI€£ Iﬁ:2 2 TOK/L 1/)
k+1 k w,v "M Ax v 2
E&é,&ﬁ [Eﬂvl’] < EMV %k {5 B 2/4% G A H ( Gkvxkﬁk ) H + 2 e
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Convergence theory

Applying Taylor's expansion and Lemma:
T T 2 2
k+1 K VxLy v Dxy 0RL, L Ok Axg
Egi et [C571] < £y + (vxcl,ﬁ,y) (ax) + =k (&%) + v

If w > [, then

T
Vx ‘Cu v Axy < _S Axy 2
VAEk AXg ) GV xLy

v

From the system that gives the search direction:
2
Axy 2 < 3'{M Ax 2
AN ) Gk VxLy
k16

Then

Wnak}‘( an o Do g2

k+1 k N
Eg?g‘;{ [Eu,u] < E,u,u - O {5 - 2/4% . G VxLy 2 k

5.2
(;NI‘G

——= — then
3T0K/L[L,V K

|f0{k <

Bep g L4 < £ — S| (G, Y+ Tl g

gkek, G VxLk 5 k
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Adaptive stochastic SQP

59



Sample size in Step 1
The sample size |£§\ is monotonically increasing and chosen so that the event

_ { H (gk -V +v (MkaVka — MG Vx Ly )H
k VGG Gy (8k — V)

< Kgrad * ak

Vxﬁk + I/Mkaﬁfﬁk + G/Z—Ck
VGG GV kL

satisfies P(AS | Xk, Ak) < Pgrad

> Kgrad > 0, Pgrad € (0, 1) are inputs to the algorithm
> samples can be generated before selecting u
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Sample size in Step 1
The sample size |£§\ is monotonically increasing and chosen so that the event

_ { H <gk -V +v (MkaVxﬁk — MG Vx Ly )H
k VGG Gy (8k — V)

< Kgrad * ak

Vxﬁk + l/Mkaﬁfﬁk + G/Z—Ck
VGG GV kL

satisfies P(AS | Xk, Ak) < Pgrad

> Kgrad > 0, Pgrad € (0, 1) are inputs to the algorithm
> samples can be generated before selecting u

Algorithm (Sample size selection):

While true do
1: Generate |£§| samples Sé
2. If

Cosa198 (512)

6)([:;( + I//\_/IkaVf[:k + GZCk 2 Al
l/GkaTGkVX[,k

k
&gl <
2
Kgrad T

then [¢5] = pl&g]
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Stochastic SQP is well-posed

Lemma: Algorithm that selects the sample size \£§| terminates in finite time (with
probability 1) and P(AY, | xx, Ak) < Pgrad a large enough constant Cgray.
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Stochastic SQP is well-posed

Lemma: Algorithm that selects the sample size \£§| terminates in finite time (with
probability 1) and P(AY, | xx, Ak) < Pgrad a large enough constant Cgray.

> the effect of the tuning parameter Cg.q is negligible
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Stochastic SQP is well-posed

Lemma: Algorithm that selects the sample size \£§| terminates in finite time (with
probability 1) and P(AY, | xx, Ak) < Pgrad a large enough constant Cgray.

> the effect of the tuning parameter Cg.q is negligible

Lemma: If

Cr log (%)

(s N\ (A | .
Kfa ALk A /\EkA

Akov

leFl =

for a large enough constant Cy, then

P(BE | Xk, Ak, Axi, AXe) < pr and  E [|5 —-ck LIPIVE [|5 —-cx P1<4,

Hi,V i,V

- T
Vxﬁlé v Ax
< —kfdl (vxﬁlkk’ ) (AAD }
Rie>v

M,V

where

Sk
}Eﬂk v Eﬂk»”

B = {8k, — £hyu| v
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Stochastic SQP is well-posed

Lemma: Algorithm that selects the sample size \£§| terminates in finite time (with
probability 1) and P(AY, | xx, Ak) < Pgrad a large enough constant Cgray.

> the effect of the tuning parameter Cg.q is negligible

Lemma: If

Cr log (%)

(s N\ (A | .
Kfa ALk A /\EkA

Akov

leFl =

for a large enough constant Cy, then

P(BE | Xk, Ak, Axi, AXe) < pr and  E [|5 —-ck LIPIVE [|5 -cx Pl<e,

Hi,V i,V

- T
VLK A
<~k (v z:’k) (&)}
AV

> the effect of the tuning parameter Cr is negligible
> we do not need a While loop to select

M,V

where

Lk Lk
‘ H>v Aksv

k
Bk_{’ﬁmm ‘cukl’
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Stochastic SQP is well-posed

Lemma: The condition

(S) () = () o et <190

?Aﬁzk’,j AXg GV x Ly

can be satisfied by the While loop in the stochastic SQP algorithm.

k
Fuksv
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Stochastic SQP is well-posed

Lemma: The condition

6"52;(11/ ’ Ax < YRH NV Ax 2 d < ?ﬁk
ALk, A ) ST T o I\ aTesk and o < [VLE,..

can be satisfied by the While loop in the stochastic SQP algorithm.

Furthermore, there exists a deterministic constant fi > 0 such that fix = fig < [i,
Vk = K for some K < o0.
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Stochastic SQP is well-posed

Lemma: The condition

_ T
VxLlaw Bxc) o _JRHAY Axy ? and |lo| < VLR
VALE, Axe) 2 G VX Ly kil = kv

can be satisfied by the While loop in the stochastic SQP algorithm.

Furthermore, there exists a deterministic constant fi > 0 such that fix = fig < [i,
Vk = K for some K < o0.

> for each run of the algorithm, the merit function is invariant after certain
number of iterations

» the threshold K is random and might be different for each run

» we study iterations after K to establish global convergence

> [ig has a deterministic upper bound [
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Comment on convergence analysis

We set w to satisfy

1-w _ B(vrRH A V)

1

w 32p{ﬁ£ﬂyyamax’r3 \% (/{gradamaXTl + T4)}2

"ak-1)
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One-step error recursion
Lemma:

> On the event A, N By,

¢k+1 k

g v,w B vsw
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One-step error recursion
Lemma:

> On the event A, N By,

¢k+1 k

g v,w B vsw

> On the event Af N By,

k+1
(Dﬁ;(yl’yw

2
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One-step error recursion
Lemma:

> On the event A, N By,

2
1 1 Vx»c,i_
o+ ok =—Z(1-w(1-=)|&+a oy
Bgsvsw ARV (=) o) |k + ok VaLk
> On the event Af N By,
2
VLK
Okt =0k L < p(l—w)ax K
Ao~ VR VAL v
> On the event BE,
2
VLK
Ot =k < p(l—w)a i
Bgsvsw AR Vsw VA[’E;(,V
7s) s mk K
(1B, — L+ 1B, — L.



One-step error recursion
Lemma:

> On the event A, N By,

k 2
1 1 VxLE
¢li-f1 —‘:D‘S, :—7(1—(0) <1—7> €k + Qg ZK’V
AR v,w Agv,w 2 P V)‘Lﬁ[(yV
> On the event Ai N By,
2
VLK
¢/§+1 _ bk < ,0(1 —w)ak ( Hig v
P Vyw P V,w k
K K V)‘Eu,z,v
> On the event BE,
2
VLK
L < p(1 — w)ay e
AR vw fg v,w VAEE;(,V
~Sk Sk ~k k
+ w(|£ﬁ‘_<’y — Lﬁrw”' + wﬁk”’ — Lﬁk7y|).
> if either function or gradient are imprecisely estimated,
then there is no guarantee that <Df_k b will decrease
RoVs

> the increase of ¢E_ can be controlled, when p¢, pgraq are small enough
K

VW
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