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Motivation



Simulator-based models

• Independent sampling is possible, but the likelihood is unavailable

• Model is usually at best a rough approximation of a complex physical or biological

phenomenon

• It will most likely not capture all of the key characteristics of the underlying data

generating process.

Two main problems:

1 Unavailability of the likelihood function

2 Model misspecification
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Problem setting

Simulator-based model family

PΘ = {Pθ : θ ∈ Θ} ⊆ P

Pθ is associated with simulator function

Gθ : U → X and probability measure U in

space U

y := Gθ(u) ∼ Pθ, u ∼ U.

Observed i.i.d. data x1:n ∼ P∗
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Robust LFI

• Bayesian inference via uncertainty coming from the data generating distribution

while preserving robustness

1 Approximate Bayesian Computation (ABC) for ex. Bernton et al. (2019)

2 Generalized Bayesian Inference (GBI) for ex. Pacchiardi and Dutta (2021), Schmon

et al. (2020)
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Background



Bayesian Nonparametric Learning (NPL) framework

(Lyddon et al., 2018; Fong et al., 2019)

1 Place a nonparametric prior directly on the data-generating mechanism P∗:

P ∼ DP(α,F), P|x1:n ∼ DP (α′,F′)

where

α′ = α+ n, F′ := α
α+n

F+ n
n+α

Pn, Pn = 1
n

∑n
i=1 δxi

2 For a loss function l(x , θ) propagate uncertainty from P∗ to the parameter of

interest θ through

θ∗l (P∗) := arg infθ∈Θ EX∼P∗ [l(X , θ)]

3 The push-forward measure (θ∗l )#(DP(α
′,F′)) gives a posterior on Θ denoted by

ΠNPL.
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Push-forward measure

To obtain independent realisations from ΠNPL at iteration j :

1 Sample P(j) from the posterior DP;

2 Compute θ(j) = θ∗l (P(j))

6



Push-forward measure

To obtain independent realisations from ΠNPL at iteration j :

1 Sample P(j) from the posterior DP;

2 Compute θ(j) = θ∗l (P(j))

6



Push-forward measure

To obtain independent realisations from ΠNPL at iteration j :

1 Sample P(j) from the posterior DP;

2 Compute θ(j) = θ∗l (P(j))

6



Method



Distance-based loss function

θ∗l (P∗) := arg infθ∈Θ EX∼P∗ [l(X , θ)]

D(Pθ,P∗)

• Use a distance-based loss between real and target distribution

• Target: θ0 = arg infθ∈Θ D(P∗,Pθ) for some distance function D : P ×P → R+

• Minimisation of expected loss −→ Minimum Distance Estimation (MDE), Parr and

Schucany (1980)

θ∗D(P∗) = arg infθ∈Θ D(P∗,Pθ)
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Proposal: Maximum Mean Discrepancy (MMD) based loss

• Proposal: Maximum Mean Discrepancy (MMD)

• Map θ∗ now corresponds to a minimum MMD estimator as in Briol et al. (2019);

Chérief-Abdellatif and Alquier (2022)

• Integral Probability Metrics (IPMs), Müller (1997):

D(P,Q) = sup
f∈F

∣∣∣∣ ∫
X
f (x)P(dx)−

∫
X
f (x)Q(dx)

∣∣∣∣
• Maximum Mean Discrepancy (MMD): Restrict F to a unit Reproducing Kernel

Hilbert space (RKHS), Hk , defined through a symmetric, positive definite kernel

function k : X × X → R, with associated norm ∥ · ∥Hk and inner product

⟨·, ·⟩Hk
: Hk ×Hk → R.

• Reproducing property:

f (x) = ⟨f , k(·, x)⟩Hk

• Functions in Hk have the form f (x) =
∑d

i=1 cik(x , xi ) for some ci ∈ R
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Maximum Mean Discrepancy (MMD)

• So MMD is defined as:

MMD(P,Q) = sup f∈Hk ,
∥f ∥Hk

≤1

∣∣∣∣ ∫X f (x)P(dx)−
∫
X f (x)Q(dx)

∣∣∣∣
• The MMD between two probability measures P and Q can be expressed as

MMD2(P,Q) :=
∫
X

∫
X k(x , y)P(dx)P(dy)− 2

∫
X

∫
X k(x , y)P(dx)Q(dy)

+
∫
X

∫
X k(x , y)Q(dx)Q(dy)

• It can be estimated for example using a U-statistic as in Gretton et al. (2008):

MMD2
k,U(Pm,Qn) = 1

m(m−1)

∑
i ̸=j k(yi , yj)−

2
nm

∑n
i=1

∑m
j=1 k(xi , yj)

+ 1
n(n−1)

∑
i ̸=j k(xi , xj)

where {yj}mj=1
iid∼ P and {xi}ni=1

iid∼ Q.

−→ θ∗(P∗) = arg infθ∈Θ MMD2
k,U(P∗,Pθ)
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MMD Posterior Bootstrap

1 Draw P(j) ∼ DP(α′,F′)

2 Obtain θ(j) := θ∗(P(j)) = argminθ∈Θ MMD2
k,U(P(j),Pθ)

x̃
(j)
1:T

iid∼ F, (w
(j)
1:n, w̃

(j)
1:T ) ∼ Dir

(
1, . . . , 1,

α

T
, . . . ,

α

T

)
.

P(j) =
n∑

i=1

w
(j)
i δxi +

T∑
k=1

w̃
(j)
k δ

x̃
(j)
k

∼ ν̂. (1)

where ν̂ denotes the probability measure on P defined by (1).
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Posterior Bootstrap with the MMD

Algorithm 1: MMD Posterior Bootstrap

input: x1:n, T , B, α, F, U, Gθ.

for j ← 1 to B do

Sample x̃
(j)
1:T

iid∼F and

(w
(j)
1:n, w̃

(j)
1:T ) ∼ Dir

(
1, . . . , 1, α

T
, . . . , α

T

)
.

Set P(j) =
∑n

i=1 w
(j)
i δxi +

∑T
k=1 w̃

(j)
k δ

x̃
(j)
k

.

Obtain θ(j) = θ∗(P(j)) using numerical optimisation.

return Posterior bootstrap sample θ(1:B)
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Theoretical Results



Generalisation error

• Assumption: supx,x′∈X |k(x , x ′)| <∞

• W.L.O.G. |k(x , x ′)| ≤ 1 ∀ x , x ′ ∈ X

• ν := DP(α′,F′)
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Generalisation error
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• W.L.O.G. |k(x , x ′)| ≤ 1 ∀ x , x ′ ∈ X

• ν := DP(α′,F′)

0 ≤
Generalisation Error︷ ︸︸ ︷

E
x1:n

iid∼ P∗
[
EP∼ν

[
MMD(P∗,Pθ∗(P))

]]
− inf

θ∈Θ
MMD(P∗,Pθ)

≤ 2√
n
+

2√
α+ n + 2

+
4α

α+ n

• Rate agrees with results in Chérief-Abdellatif and Alquier (2022)
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Posterior consistency

• For standard Bayesian inference with posterior measure Πn defined on Θ directly,

for any Mn → +∞ such that Mnn
− 1

2 → 0:

Πn

(
θ ∈ Θ : MMD(Pθ,P∗)> infθ∈Θ MMD(Pθ,P∗) + Mn

n1/2

)
n→∞−→ 0 (2)

• In our case:

ν

(
P ∈ P : MMD(Pθ∗(P),P∗)> inf

θ∈Θ
MMD(Pθ,P∗) +

Mn

n1/2

)
n→∞−→ 0.
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Robustness to outliers

• Suppose P∗ = (1− ϵ)P̃+ ϵQ

• Then

E
x1:n

iid∼ P∗
[
EP∼ν̂

[
MMD

(
P̃,Pθ∗(P)

)]]
≤ inf

θ∈Θ
MMD(P̃,Pθ) + 4ϵ+

2√
n
+

2√
α+ n + 2

+
4α

α+ n
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Applications



Example: Contaminated G-and-k distribution model

P∗ = (1− ϵ)Pθ0 +ϵQ where Pθ0 denotes the G-and-k distribution with

θ0 = (3, 1, 1,− log(2)), and Q is the shifted distribution Q = Pθ0 ±50

15
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Example: Contaminated G-and-k distribution model

Figure 1: Comparison of posterior marginal distributions obtained using the MMD Posterior

Bootstrap (NPL-MMD) and the Wasserstein-ABC (WABC) method in Bernton et al. (2019).
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Example: Toggle switch model with Cauchy noise

• Arising in Systems Biology (see e.g. Bonassi et al., 2011)

• A dynamic model used to study cellular networks describing the interaction of two

genes over time

• For cell i and unknown parameters θ = (α1, α2, β1, β2, µ, σ, γ)
⊤, the simulator input

is ui = (ui,1,1, ui,1,2, . . . , ui,T ,1, ui,T ,2, ui,T+1,1)
⊤ ∼ Unif([0, 1]2T+1) and the simulator

Gθ is defined through:

Gθ(ui ) = Φ−1
(
Φ
(−(µ+vi,T )v

γ
i,T

µσ

)
+ ui,T+1,1

(
1− Φ

(−(µ+vi,T )v
γ
i,T

µσ

)))
µσ
v
γ
i,T

+ (µ+ vi,T )

where for t = 1, . . . ,T − 1, we have

ṽi,t+1 = vi,t +
α1

1+w
β1
i,t

− (1 + 0.03vi,t)

w̃i,t+1 = wi,t +
α2

1+v
β2
i,t

− (1 + 0.03wi,t)

vi,t+1 = ṽi,t+1 + 0.5Φ−1
(
Φ(−2ṽi,t+1) + ui,t,1(1− Φ(−2ṽi,t+1))

)
wi,t+1 = w̃i,t+1 + 0.5Φ−1

(
Φ(−2w̃i,t+1) + ui,t,2(1− Φ(−2w̃i,t+1))

)
17
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Φ(−2ṽi,t+1) + ui,t,1(1− Φ(−2ṽi,t+1))
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• A dynamic model used to study cellular networks describing the interaction of two

genes over time

• For cell i and unknown parameters θ = (α1, α2, β1, β2, µ, σ, γ)
⊤, the simulator input

is ui = (ui,1,1, ui,1,2, . . . , ui,T ,1, ui,T ,2, ui,T+1,1)
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Gθ(ui ) = Φ−1
(
Φ
(−(µ+vi,T )v

γ
i,T

µσ

)
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(
1− Φ

(−(µ+vi,T )v
γ
i,T

µσ

)))
µσ
v
γ
i,T
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Example: Toggle switch model with Cauchy noise

• Inference on θ = (α1, α2, β1, β2, µ, σ, γ) for n = 2000 data points simulated from

the toggle-switch model in which 10% of the data have some added Cauchy noise

of location parameter 0 and scale parameter 10.
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Discussion & current work



Strengths & Limitations

Strengths:

✓ Posterior Bootstrap algorithm suitable for simulator-based models inducing
robustness through:

1 Bayesian Nonparametric Learning (NPL) framework

2 Minimum Maximum Mean Discrepancy (MMD) estimators

✓ Highly parallelisable algorithm

✓ Generalisation error, posterior consistency and robustness to outliers guarantees

Limitations:

✓ Optimisation; objective usually not convex

✓ Kernel choice and associated hyperparameters

✓ MMD approximation; estimators with improved sample complexity e.g. Bharti et al.

(2023)
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Current work

• Measurement Error in the covariates

• Covariate X is only observed via a noisy proxy W such that:

X = W + N, E[N] = 0

• Function g : Θ×X → R explains the relationship between X and Y such that:

Y = g(θ0,X ) + E , E[E ] = 0.

Goal: to estimate θ0 when data from (W ,Y ) is available

• We do not have observations from P∗ anymore!

• If our model assumes that there is no ME, how can we be robust?

• Poster later today :)
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