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Simulator-based models

e Independent sampling is possible, but the

e Model is usually at best a rough approximation of a complex or
phenomenon
o It will most likely capture all of the key characteristics of the underlying data

generating process.

Two main problems:

@ Unavailability of the likelihood function

@ Model misspecification
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Simulator-based model family Observed i.i.d. data x3., ~ P
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Py is associated with simulator function * I-._‘ J_.-l‘ ""]Pn
Gy : U — X and probability measure U in \x_______/f
space u misspecified

modal
y = Go(u) ~Pg,u~TU.
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Robust LFI

e Bayesian inference via uncertainty coming from the data generating distribution
while preserving robustness

Qo for ex. Bernton et al. (2019)

Qo for ex. Pacchiardi and Dutta (2021), Schmon
et al. (2020)
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Bayesian Nonparametric Learning (NPL) framework

(Lyddon et al., 2018; Fong et al., 2019)

@ Place a nonparametric prior on the data-generating mechanism P*:
P ~ DP(a,F), P|xi., ~ DP (', F')

where

o =a+n F =2 F+ Py, Pn—lzl'.’:léxl.

a+n Y

@ For a loss function /(x, 0) from P* to the parameter of
interest 6 through

\ 07 (P*) := arginfoco Exp+[/(X, 0)] \

@ The push-forward measure (0;)x(DP(a’,F')) gives a posterior on © denoted by
Mypr.
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Push-forward measure

To obtain independent realisations from lMypL at iteration j:

@ Sample PY from the posterior DP;
@ Compute V) = 9; (PY))

iid
P, P P® < DP(o/, F) 0P 0
P — P IIxpr
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Distance-based loss function

\ 07 (P*) = arginfoco Exmp= [I(X, 0)]

D(;"mf )
e Use a -based loss between real and target distribution
e Target: Oy = arginfoco D(P*,Py) for some distance function D : P x P — Ry

e Minimisation of expected loss Minimum Distance Estimation (MDE), Parr and

Schucany (1980)
05 (P*) = arginfgce D(P*,Pp)
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Proposal: Maximum Mean Discrepancy (MMD) based loss

e Proposal: Maximum Mean Discrepancy (MMD)

e Map 6" now corresponds to a minimum MMD estimator as in Briol et al. (2019);
Chérief-Abdellatif and Alquier (2022)

e Integral Probability Metrics (IPMs), Miiller (1997):

D(P,Q) —sup‘/ f(x)P(dx) — / f(x)Q(dx)

fer

e Maximum Mean Discrepancy (MMD): Restrict F to a unit Reproducing Kernel
Hilbert space (RKHS), Hy, defined through a symmetric, positive definite kernel
function k : X x X — R, with associated norm || - |7, and inner product
(- '>Hk CHi X Hik — R.

e Reproducing property:

F(x) = (f, k(- X)) 3

e Functions in # have the form f(x) = 3¢, cik(x, x;) for some ¢; € R



Maximum Mean Discrepancy (MMD)

e So MMD is defined as:

MMD(P,Q) = sup fer% jX f(x)P(dx) — fX f(x)Q(dx)

11132, <1
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e So MMD is defined as:

MMD(P,Q) = sup fer% jX f(x)P(dx) — fX f(x)Q(dx)

11132, <1

e The MMD between two probability measures P and Q can be expressed as

/\/II\/IDQ(IF’7 Q) := fX fX k(x ) (dx)P(dy) — 2fX fX x, y)P(dx)Q(dy)
+ IX fx Q(dx)Q(dy)

e It can be estimated for example using a U-statistic as in Gretton et al. (2008):

MMD (P, Q") = =y X1y k(i ¥5) = s 2o o K (i, )
+ ﬁ Zi;éj k(xi, ;)

iid iid

where {y;}7.; ~ P and {x;}/-; ~ Q.

— 0*(P*) = arginfgco MMD;, /(P*, Py)
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P P2 PO X DP(/, F)
P P2
1% P
(1) ®
PG

@ Draw PY) ~ DP(o/,F')

10



MMD Posterior Bootstrap

PO, P2, P X DP(o/, F') 0P 0
P P IIxpL
X — }
(1) f }
g = s g® g8 g

@ Draw PY) ~ DP(o/,F')
@ Obtain 0V := ¢*(PY)) = arg minyco MMD? ,(PY), Py)
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MMD Posterior Bootstrap

ud 5
PO, P PO < § ~ DP(«, F) 0P 0
P Pe) [npr
_— N y

@ Draw PY) ~ DP(o/,F')
@ Obtain 0V := ¢*(PY)) = arg minyce MMD? ,(PY), Py)

)?fJ)T'r'SIF, (W{jz,W{JT) Dlr( 1,%,...,%)
n . T .
U) — Z WI_(/)(;XI_ + Z W;Ej)(s);(/) = B, (]_)
i=1 k=1 ,

where © denotes the probability measure on P defined by (1).
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Posterior Bootstrap with the MMD

Algorithm 1: MMD Posterior Bootstrap
input: x1.,, T, B, «, F, U, Gg.
for j < 1 to B do

Sample { 8F and
(wfjivwl’) Y oom0ndh frposon )
Set PV *Z?:lwf 5Xf+Zk W 50
ouv) — 9*(]?0)) using numerlcal optimisation.

return Posterior bootstrap sample §(5)
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Generalisation error

e Assumption: sup, ./ [k(x,x")| < oo
e WLO.G. |k(x,x)|] <1 V x,x'eX

o v:=DP(d/,F)

PEMMDETB) < B (B [MMD(E" )]
Po
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Generalisation error

o Assumption: sup, ./ [k(x,x")| < oo
e WLO.G. |k(x,x)| <1 V x,x'eX
e v:= DP(d, )

Generalisation Error

0 E_ s, [Ez~y [MMD(P", Py-(s))]] - inf MMD(P", Po)

X1:p ~ P*
i-i- 2 i 4o
vn o Va+n+2 a+n

Pe
inf MMD(P*, P,
éEe ( 1 5‘)

-': i .
\ I >

e Rate agrees with results in Chérief-Abdellatif and Alquier (2022)
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Posterior consistency

e For standard Bayesian inference with posterior measure I, defined on © directly,
for any M, — 400 such that l\/l,,n*% — 0:
n—

M, (06@:MMD(P9,P*) infoco MMD(Py, P*) + Mn) i 0 ()

iy
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Posterior consistency

e For standard Bayesian inference with posterior measure I, defined on © directly,
for any M, — 400 such that l\/l,,n*% — 0:

1

l

M, (eee . MMD(Ps, P*) > infgee MMD(Ps, P*) + ) "

iy

30 (2)

e In our case:

* Mn n—oo
v (P ePpP: MMD(P@*(HD)7P*) ;2%MMD(P97P )+ n1/2> i> 0.
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Robustness to outliers

e Suppose P* = (1 — )P +¢Q
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Robustness to outliers

e Suppose P* = (1 — )P +¢Q

e Then

o [Brs WVOE )]

x1:p ~ P

2 4o

|nfMMDIP’IP> +4e+ —
(B, o) + e f Va+n+2 o
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Example: Contaminated G-and-k distribution model

P* = (1 — €) P, +¢Q where Py, denotes the G-and-k distribution with
6o = (3,1,1,—log(2)), and Q is the shifted distribution Q@ = Py, £50
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Example: Contaminated G-and-k distribution model

P* = (1 — €) P, +¢Q where Py, denotes the G-and-k distribution with
6o = (3,1,1,—log(2)), and Q is the shifted distribution Q@ = Py, £50

e=0.1
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Example: Contaminated G-and-k distribution model
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Figure 1: Comparison of posterior marginal distributions obtained using the MMD Posterior
Bootstrap (NPL-MMD) and the Wasserstein-ABC (WABC) method in Bernton et al. (2019).
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Example: Toggle switch model with Cauchy noise

e Arising in Systems Biology (see e.g. Bonassi et al., 2011)

e A dynamic model used to study cellular networks describing the interaction of two
genes over time

e For cell i and unknown parameters 0 = (au, a2, B1, B2, i1, 0, w)T, the simulator input
is uj = (U,',l,l, Ui12,..., Ui T 1,UiT2, U,'7T+111)-r ~ Unif([07 1]2T+1) and the simulator
Gy is defined through:

Go(uj) =7t <¢(M) + Ui, 41,1 (1 = ¢<M))) B2+ (p+viT)

2]
no no vilT

where for t = 1,..., T — 1, we have

Vi1 = Vie + —gr — (1+0.03vj;)

14w}

Wier1 = Wie + 1+a\/2.62 — (14 0.03w;,¢)

Vier1 = Vieq1 + 0.507" (¢(*2‘7i1t+1) + ui1(1— ¢(*2‘7i,t+1)))
Wit41 = Wity1 + 0.5¢71(¢(*2Wi,t+1) + ujr2(1— ¢(*2V'~/i,t+1)))

17



Example: Toggle switch model with Cauchy noise

e Inference on 0 = (au, aw, B1, B2, i1, 0,) for n = 2000 data points simulated from
the toggle-switch model in which 10% of the data have some added Cauchy noise
of location parameter 0 and scale parameter 10.
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Example: Toggle switch model with Cauchy noise

e Inference on 0 = (a1, a2, B1, B2, i1, 0,) for n = 2000 data points simulated from
the toggle-switch model in which 10% of the data have some added Cauchy noise
of location parameter 0 and scale parameter 10.

750  ® Datawithout noise
500

50

. _-ila._ W

0 250 50 750 1000
X
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Strengths & Limitations

Strengths:

v’ Posterior Bootstrap algorithm suitable for simulator-based models inducing
robustness through:

@ Bayesian Nonparametric Learning (NPL) framework

@ Minimum Maximum Mean Discrepancy (MMD) estimators
v Highly parallelisable algorithm

v Generalisation error, posterior consistency and robustness to outliers guarantees
Limitations:

v Optimisation; objective usually not convex
v Kernel choice and associated hyperparameters

v" MMD approximation; estimators with improved sample complexity e.g. Bharti et al.
(2023)

19
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° in the covariates

e Covariate X is only observed via a noisy proxy W such that:
X=W+N, E[N]=0
e Function g : © X X — R explains the relationship between X and Y such that:

Y = g(6o,X) + E, E[E]=0.

to estimate 6y when data from (W, Y) is available

e We do not have observations from P* anymore!
e |f our model assumes that there is no ME, how can we be robust?

e Poster later today :)
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