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Plan for my talk

▶ Distribution regression for ecological inference

▶ More recent work on Gaussian process aggregation

▶ A theorem and some open questions
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Kernel mean embeddings and distribution regression1

Individual-level data with group-level labels:(
{x j1}

N1
j=1, y1

)
,
(
{x j2}

N2
j=1, y2

)
, . . .

(
{x jn}

Nn
j=1, yn

)
Learn a function:

f : {x j}Nj=1 → y

1Flaxman, Wang, Smola, “Who Supported Obama in 2012?: Ecological
Inference through Distribution Regression,” KDD 2015
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Learning from distributions
▶ Previous work: Jebara et al, 2004; Hein and Bousquet, 2005;

Muandet et al, 2012; Póczos et al, 2013, Szabó et al (2014),
Lopez-Paz et al, 2015, Lopez-Paz (2016).

▶ Distribution regression / distribution classification relies on
the kernel mean embedding [see Muandet et al 2017’s survey]

▶ Given kernel k(x , ·), RKHS Hk , and corresponding embedding
ϕ(x) ∈ Hk , consider a measure with X ∼ P. Then define:

µP := E[ϕ(X )] =

∫
X
ϕ(x)dP(x) (1)

Obvious empirical estimator for samples x1, . . . , xn:

µ̂P :=
1

n

∑
i

ϕ(xi ) (2)

▶ Learning: use any supervised learning method to learn a
function f (µP). 4



Distribution embedding illustration

p() Reproducing Kernel Hilbert Space

RKHS embedding of P

RKHS embedding of Q

P

Q

Figure: Each distribution is mapped into the reproducing kernel Hilbert
space via an expectation operation. (Source: Muandet et al 2017)
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Ecological inference with distribution regression
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Bayesian distribution regression
▶ Estimate µ̂1, . . . , µ̂n ∈ Rn using kernel embeddings:

µ̂i =
1

N

∑
j

k(x ji , ·) =
1

N

∑
j

ϕ(x ji )

▶ Use GP logistic regression

▶ Additive kernels with a spatial component:

Kij = σ2
x⟨µ̂i , µ̂j⟩+ ks(si , sj)

f ∼ GP(0,K )

ki |fi ∼ Binomial(ni , logit
−1(fi ))

Obama received ki out of ni votes in region i .

▶ Make predictions for demographic subgroups:

f̂ (µwomen
i , si )
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Kernel details

▶ Demographic attributes (Gaussian RBF):
▶ Standardize coordinates
▶ Expand discrete attributes:

(low, medium, high income) → ([1 0 0], [0 1 0], [0 0 1]).
▶ Use random Fourier features for speed:

k(x , x ′) = ⟨ϕ(x), ϕ(x ′)⟩ ≈ ⟨ϕ̂(x), ϕ̂(x ′)⟩ with ϕ̂(x) ∈ R2048.

▶ Spatial attributes with Matérn-32 :

k(s, s ′) = (1 + ρ∥s − s ′∥) exp(−ρ∥s − s ′∥)

Millions of observations, but the covariance matrix is 843× 843 for
the 843 electoral regions.
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Algorithm details

▶ One pass through census data to create mean embeddings:

µ̂1 =

∑
j w

j
1ϕ(x

j
1)∑

j w
j
1

, . . . , µ̂n =

∑
j w

j
nϕ(x

j
n)∑

j w
j
n

(3)

▶ Setup GP regression:

f ∼ GP(0, σ2
xKx + σ2

sKs)

ki |fi ∼ Binomial(ni , logit
−1(fi ))

▶ Laplace approximation for hyperparameter learning
θ = [σx , σs , ρ] w/ marginal likelihood

▶ Bayesian posterior inference to make predictions for latent f
at new “locations”:

p(fmen
∗ |y , θ̂)
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Experiments

Exit poll women Exit poll men

Ecological regression women Ecological regression men
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Experiments
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Experiments
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Refinements for 2016 election2

▶ Explicity model non-voters:

i = [Clinton votes,Trump votes,Non-votes and third party votes]⊤

▶ Multinomial likelihood with softmax link, fit with penalized
MLE with group lasso and L2 penalty

▶ More interpretable / richer feature representation to allow for
exploratory analysis / calculation of marginal effects:

(x ji ) := [ϕ1(x
j
r1), . . . , ϕd(x

j
rd)]

⊤ (4)

▶ Incorporation of some exit polling data as extra set of labeled
distributions

2arXiv:1611.03787
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Results for 2016 Presidential Election

Clinton Trump Frac. electorate Participation rate

Men 0.45 0.55 0.47 0.50
Women 0.56 0.44 0.53 0.53

18–29 year olds 0.62 0.38 0.17 0.42
30–44 0.54 0.46 0.25 0.54
45–64 0.46 0.54 0.39 0.58
65 and older 0.45 0.55 0.18 0.47
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Results for 2016 Presidential Election

Clinton Trump Participation

Language other than English spoken
at home

0.74 0.26 0.32

Mobility = lived here one year ago 0.45 0.55 0.55
Mobility = moved here from outside
US and Puerto Rico

0.60 0.40 0.47

Mobility = moved here from inside
US or Puerto Rico

0.56 0.44 0.48

Active duty military 0.45 0.55 0.56
Not enrolled in school 0.45 0.55 0.60
Enrolled in a public school or public
college

0.61 0.39 0.39

Enrolled in private school, private col-
lege, or home school

0.66 0.34 0.53
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Results for 2016 Presidential Election

Clinton Trump Frac Participation

personal income ≤ 50000 & men 0.56 0.44 0.25 0.37
personal income ≤ 50000 & women 0.63 0.37 0.36 0.40
50000 < personal income ≤ 100000
& men

0.40 0.60 0.15 0.67

50000< personal income≤< 100000
& women

0.53 0.47 0.13 0.84

personal income > 100000 & men 0.49 0.51 0.08 0.70
personal income > 100000 & women 0.62 0.38 0.03 0.80
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Exploratory results

feature deviance frac.deviance
1 RAC3P - race coding 0.04 0.86
2 ethnicity interacted with has degree 0.04 0.74
3 schooling attainment 0.04 0.72
4 ANC2P - detailed ancestry 0.04 0.83
5 OCCP - occupation 0.04 0.75
6 COW - class of worker 0.04 0.67
7 ANC1P - detailed ancestry 0.05 0.77
8 NAICSP - industry code 0.05 0.71
9 RAC2P - race code 0.05 0.70

10 age interacted with usual hours worked per week (WKHP) 0.05 0.69
11 sex interacted with ethnicity 0.05 0.65
12 MSP - marital status 0.05 0.61
13 FOD1P - field of degree 0.05 0.61
14 ethnicity 0.06 0.57
15 RAC1P - recoded race 0.06 0.54
16 sex interacted with age 0.06 0.57
17 has degree interacted with age 0.06 0.55
18 age interacted with personal income 0.06 0.76
19 sex interacted with hours worked per week 0.06 0.62
20 personal income interacted with hours worked per week 0.06 0.69
21 personal income 0.06 0.59
22 RACSOR - single or multiple race 0.07 0.42
23 has degree interacted with hours worked per week 0.07 0.59
24 hispanic 0.07 0.56
25 sex interacted with personal income 0.07 0.57
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Marginal results
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Marginal results
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Conclusion: ecological inference

▶ New ecological inference method through Bayesian
distribution regression

▶ Scalable to millions of observations through random features

▶ Good empirical results

▶ Realistic uncertainty intervals

▶ Simple method [off-the-shelf tools]

▶ Python package by Danica Sutherland and replication code

▶ Next steps (before Biden-Trump 2024!): fully Bayesian version
of multinomial model, learning richer feature representations,
validation on ground truth

21
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Encoding GP aggregates and change-of-support
problem
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Kenya: boundaries before and after 2010
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aggVAE3: what are we solving?
▶ Adjacency-based models assume heterogeneity.

▶ Changing boundaries: change-of-support.
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3E Semenova, S Mishra, S Bhatt, S Flaxman, and HJT Unwin, “Deep
learning and MCMC with aggVAE for shifting administrative boundaries:
mapping malaria prevalence in Kenya”, UAI 2023 workshop ”Epistemic
Uncertainty in Artificial Intelligence” Proceedings, Publisher: Springer, LNAI
(Lecture Notes in Artificial Intelligence); https://arxiv.org/abs/2305.19779
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Computational grid

▶ Create fine spatial grid {g1, ...gn} over the domain of interest:

34 36 38 40 42

4

2

0

2

4

6

25



Computational grid

▶ Draw GP evaluations over the grid:

f =

f1
...
fn

 ∼ MVN(0,Σ),

fj = f (gj),

Σjk = σ2 exp

(
−
d2
jk

2l2

)
,

djk = ||gj − gk ||
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Attribution of grid points over polygons
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Computing GP aggregates over polygons

For each district (polygon) pi , i = 1, ...,K , compute

f piaggGP =

∫
pi

f (s)ds ≈ c
∑
gj∈pi

fj = cf̄ piaggGP.

Spatial random effect:

faggGP =

f p1aggGP
...

f pKaggGP

 = Mf ∈ RK ,

M : mij = I{gj⊂pi}.
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Joint encoding of priors

To tackle the the change-of-support problem, encode f̄ oldaggGP and

f̄ newaggGP jointly:

f̄ jointaggGP =



f̄
pold1
aggGP

. . .

f̄
poldK1
aggGP

−−−−
f̄
pnew1
aggGP

f̄
pnewK2
aggGP


=

(
Moldf
Mnewf

)
∈ RK1+K2 .

29



’aggVAE’ workflow

▶ Fix spatial structure of areal units as a collection of polygons
P = {p1, . . . , pk}.

▶ Create an aritificial computational grid of sufficient granularity
G = {g1, . . . , gn}.

▶ Pre-compute the matrix of indicators M, mij = I{gj⊂pi}.

▶ Draw GP evaluations over G using a selected kernel k(., .):
f = (f1, . . . fn)

T .

▶ Compute GP aggregates at the level of P : faggGP = cMf

▶ Train PriorVAE on faggGP draws to obtain faggVAE priors.

▶ Use faggVAE at inference stage within MCMC.
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Mapping malaria prevalence in Kenya

▶ Model Malaria prevalence θi , i ∈ 1, . . .K is inferred using the
Negative Binomial distribution{

nposi ∼ NegBin(ntestsi , θi ),

logit(θi ) = b0 + f piaggGP.

where ntestsi and nposi are the number of total and positive
RDT tests, correspondingly.

▶ Inference. Perform MCMC inference using faggVAE instead of
faggGP.
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Results

Comparison of MCMC for models with faggGP and faggVAE using
200 warm-up steps and 1000 iterations:

Model of the spatial
random effect

Elapsed
time

Average effective sample size
of the random effects

aggGP 15h∗ 129
aggVAE 5s 231

Table: Model comparison.

∗ aggGP model has not converged: R̂ = 1.4.
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Results
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From distribution regression to aggregated GPs4

Theorem. Consider a Gaussian process g ∼ GP(0, ρ) with kernel
ρ(P,Q) = ⟨µP , µQ⟩Hk

and f ∼ GP(0, k).

Then for any Π1, . . . ,Πn ∈ P(X ):(∫
f dΠ1, . . . ,

∫
f dΠn

)
d
= (g(Π1), . . . , g(Πn))

because ρ(P,Q) =
∫ ∫

k(x , x ′)dP(x)dQ(x ′) for any P,Q ∈ P(X ).

4See Zhu et al, “Aggregated Gaussian Processes with Multiresolution Earth
Observation Covariates,” https://arxiv.org/abs/2105.01460
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From distribution regression to aggregated GPs
Theorem.

(∫
f dΠ1, . . . ,

∫
f dΠn

)
d
= (g(Π1), . . . , g(Πn))

Remark. This justifies ecological inference aka disaggregation: for
a single individual x ∈ X , i.e. a point mass Π = δx ,

f (x) =

∫
f dΠ

d
= g(Π) = g(δx)

→ we are justified in asking for individual-level predictions from a
distribution regression / aggregated GP model!

35



Quiz. Does g(P) = ⟨f , µP⟩Hk
=
∫
fdP?

No! f lies outside Hk almost surely5

Does it matter?

5

Motonobu Kanagawa, Philipp Hennig, Dino Sejdinovic, and Bharath K.
Sriperumbudur. “Gaussian Processes and Kernel Methods: A Review on
Connections and Equivalences.” arXiv:1807.02582
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Open questions
▶ What if ρ(P,Q) is a nonlinear kernel, e.g.:

ρ(P,Q) = exp(−∥µP − µQ∥2)

▶ Can representation learning do better? Deep generative
models?

▶ But what if we care about uncertainty? Fully Bayesian
inference?

▶ Satellite imagery for disaggregation, see: Law, Sejdinovic,
Cameron, Lucas, Flaxman, Battle, Fukumizu, “Variational
Learning on Aggregate Outputs with Gaussian Processes”
(NeurIPS 2018)

▶ Assessing sources of bias in survey data, see: Bradley,
Kuriwaki, Isakov, Sejdinovic, Meng, and Flaxman,
“Unrepresentative big surveys significantly overestimated US
vaccine uptake” (Nature 2021)
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Recap

▶ Distribution regression for ecological inference

▶ Encoding GP aggregates and change-of-support

▶ From distribution regression to aggregated GPs
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Collaborators

Machine Learning & Global Health (MLGH) network

▶ Juliette Unwin (Bristol)

▶ Elizaveta Semenova, Leonid Chindelevitch, Samir Bhatt
(Imperial College London)

▶ Swapnil Mishra (National University of Singapore)
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Thank you!

▶ www.sethrf.com
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