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Deep learning theory

Why does deep learning work well?
• Several theoretical work has been conducted. 

• There are still many things that should be explored.
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• Clarify the principle of deep learning

• What is essential to realize a “good” learning system?

In this presentation:

Feature learning

[Brown et al. “Language Models are Few-

Shot Learners”, NeurIPS2020]

[Alammar: How GPT3 Works - Visualizations and Animations, 

https://jalammar.github.io/how-gpt3-works-visualizations-

animations/] [Dosovitskiy et al.: An Image is Worth 16x16 Words: 

Transformers for Image Recognition at Scale. 

arXiv:2010.11929. ICLR2021]

GPT ViT



Outline of this talk 3

2-layer NN

Multitask learning/In-context learning

1. Statistical analysis for high dimensional regression

2. Optimization guarantee for in-context feature 

learning of Transformer

Linear

Nonlinear



Effect of feature learning 
in interpolation regime
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[Keita Suzuki, Taiji Suzuki:  Optimal criterion for feature learning of two-layer 

linear neural network in high dimensional interpolation regime. ICLR2024]



High dimensional regression 5

where 𝔼 𝑥𝑖 = 0, 𝔼 𝑥𝑖𝑥𝑖
⊤ = Σ𝑋, 𝔼 𝜖𝑖 = 0, 𝔼 𝜖𝑖 = 𝜎2.

High dimensional linear regression: 

High dimensional setting: 𝑑 > 𝑛

Ridge regression: 

Q: How can the predictive error be improved by using 

a two layer network? 

𝛽

𝑊



Predictive error 6

Predictive error:

Proposition (Tsigler and Bartlett (2020))

The tail of eigenvalues of covariance matrix Σ𝑋 plays important role.

• Fast decay of 𝜆𝑗 does not generalize when 𝜆 = 0: Kernel regime

• Slow decay of 𝜆𝑗 plays regularization

→ Generalize even if 𝜆 = 0: Benign overfitting

• Slow decay of 𝜆𝑗 and large 𝑑 does not generalize: Harmful overfitting

(Bias-Variance trade-off)

When Σ𝑋 is diagonal, then the predictive error can be evaluated as follows:



Eigenvalue decay and generalization 7

(1) Kernel regime (easy)

(2) Benign overfitting (difficult) 
(interpolation regime)

(3) Harmful overfitting (too difficult)

𝑑 𝑖

[Tsigler and Bartlett, 2020; Bartlett et al., 2019]



Optimal regularization 8

• (1) Slow decay of eigenvalue 𝜆𝑗
• (2) Misalignment between 𝛽 and 𝑥
→ Bad predictive error. 

(Predictive error does not go to 0) 

Suppose that 𝛽∗ ∼ Σ𝛽.

Misalignment: 

𝛽 has large value toward non-principle components 

of 𝑥 (large 𝑗)

‖𝛽‖2: ridge regression

Σ𝛽: signal direction

‖𝛽‖
Σ𝛽
−1

2

Optimal regularization

(anisotropic norm)



2 layer NN model 9

𝛽

𝑊

Student model

(2 layer linear NN) 

We want to find the optimal 𝑊 such that 𝑊𝑊⊤ = Σ𝛽 .  

Feature learning = Metric learning

→ We need information of 𝛽′𝑠 distribution (i.e., Σ𝛽).  

Multi-task learning (pre-training): 
𝛽(2)

𝑊

𝛽(1) 𝛽(3)

(𝑊 ∈ ℝ𝑑×𝑑)

Each task 𝑡 has the true coefficient 𝛽∗
(𝑗)

.



How 𝑾 affects the result 10

• Vanilla ridge regression: 

• Feature learning: 

Eigenvalues of Σ𝑋

Eigenvalues of 𝑊Σ𝑋𝑊
⊤

 Alignment can be improved. 

 Harmful overfitting regime can be turned to kernel regime.
𝜇𝑗 Σ𝑋 ≥ 𝑗−1 𝜇𝑗 𝑊Σ𝑋𝑊

⊤ ≤ 𝑗−1

characterizes the predictive risk.

characterizes the predictive risk.



Feature learning with DoF reg 11

Just minimizing 𝑊 does not lead to a good generalization. 

(It can cause harmful overfitting)

→ Difficulty of feature learning in high dimensional settings.

Our proposal: Mallows’ 𝑪𝒑 type regularization

Degrees of freedom (DoF)

[Mallows (1973)]

DoF=
𝜆

DoF



Main result 12

Predictive error:

Theory (Predictive risk bound)

For sufficiently small 𝛿 > 0, under some technical conditions, we have 

that with high probability, the following holds uniformly over 𝑊:

𝑹(𝑾) can be an estimator of the predictive risk. 

→ Minimization of 𝑅(𝑊) leads to small predictive risk. 



Main result 2 13

Theory (Optimal risk bound)

If 𝑡𝜎2 ≤ 𝜎′
2
, then with high probability, it holds that:

Suppose that

• Tr Σ𝑋 → ∞ (𝑑 → ∞): Interpolation regime (Benign/harmful overfitting)

• Tr Σ𝛽
1/2

Σ𝑋Σ𝛽
1/2

< ∞: It becomes kernel regime by feature learning.  

→ The bound is that of kernel regime for 𝑥 ← Σ𝛽
1/2

𝑥.

Eigenvalues of Σ𝛽
1/2

Σ𝑋Σ𝛽
1/2

The bound is achieved by 

𝑊⊤𝑊 ≃ Σ𝛽.

⇒ The optimal regularization.

Σ𝛽 =
1

𝑚
σ𝑗=1
𝑚 𝛽∗

(𝑗)
𝛽∗

𝑗 ⊤



Optimal regularization 14

‖𝛽‖2: ridge regression

Σ𝛽: signal direction

‖𝛽‖
Σ𝛽
−1

2

Optimal regularization

(anisotropic norm)

The optimal bound in the theorem is achieved by 

𝑊⊤𝑊 ≃ Σ𝛽.

⇒ The optimal regularization.

• Alignment is improved

• Fast decay of 𝜇𝑗(Σ𝛽) turns the problem into a kernel regime.



Bayes optimal regularization 15

መ𝛽𝐵 ≔ argmin𝛽𝑅(𝑋, 𝜎, 𝛽) = 𝑋⊤𝑋 + 𝜎2Σ𝛽
−1 −1

𝑋⊤ 𝑦.

Lemma

(Bayes estimator)

Optimal regularization

1

𝑚


𝑖=1

𝑚

𝔼𝑥 𝑥⊤𝛽∗𝑖 − 𝑥⊤𝑊⊤ 𝛽𝑖 𝑊
2
≈ Bias + Variance = 𝔼𝛽∗~𝒩 0,Σ𝛽 ,𝑌~𝒩 𝑋𝛽∗,𝜎

2𝐼 𝛽∗ − 𝛽 𝑊
Σ𝑋

2

≔ 𝑅(𝑋, 𝜎, መ𝛽(𝑊)) (Bayes risk)

This transformation is merit of multi-output setting
Σ𝛽 =

1

𝑚


𝑖=1

𝑚

𝛽∗𝑖𝛽∗𝑖
⊤

Suppose Σ𝛽 is positive, then the minimizer of Bayes risk is given by

Remark
Since we don’t know Σ𝛽, we have to obtain good regularization by 

feature learning 



Effect of feature learning 16

(1) Kernel regime

(2) Benign overfitting 

(interpolation regime)

(3) Harmful overfitting

𝑑 𝑖

Feature learning makes the problem easy one.

Σ𝑋

Σ𝛽
1/2

Σ𝑋Σ𝛽
1/2



Case study

In some concrete situations, the feature learning 
method can provably outperform the vanilla 
ridge regression. 

Ridge regression: Predictive error=Ω(1)

Feature learning: Predictive error= o(1)
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Here, we give two examples: 

1. Harmful overfitting setting

2. Misaligned setting

(※ These are just typical situations. There are uncountable situations where 2 

layer NN with DoF regularization can outperform ridge regression)



(1) Harmful overfitting 18

Σ𝑋 and Σ𝛽 share the same eigen vectors.

1/𝑛

𝑖−2

𝜆𝑖

𝜈𝑖

Heavy tail eigenvalues

→ Harmful overfitting

• Two layer NN

• Ridge regression

Predictive error = 

Predictive error = 



(2) Misaligned setting 19

Σ𝑋 and Σ𝛽 share the same eigen vectors.

𝑖−1

𝜆𝑖

𝜈𝑖

• Two layer NN

• Ridge regression

Predictive error = 

Predictive error = 

𝑖 = 𝑛

Misalignment



Experiment 20

• Σ𝛽 = diag(1,2−𝑎, … , 𝑗−𝑎 , … , 1000−𝑎) with 𝑎 ∈ {0,0.5,1,… , 10}

• 𝜇𝑗(Σ𝑋) = 𝑗−1

𝑎

No feature learning

With feature learning

Aligned Misaligned



Computational issue 21

How to minimize 𝑹(𝑾)?

The DoF regularization is not a standard 

technique in the deep learning literature.

→ Global optimality of noisy gradient descent

→ Label noise acts as the DoF regularizer



2-layer NN in mean-field scaling 22

• Extension to 2-layer nonlinear neural network:

Mean field limit 𝑴 → ∞

𝜎 is a nonlinear activation such as sigmoid function.



Label noise and WG flow 23

2 time scale optimization:

(1) Optimization with respect to 𝑎 with fixed 𝜇: 

(2) Optimization of 𝐹 with respect to 𝜇: (Wasserstein gradient flow)

We have convergence of this algorithm with log-Sobolev assumption.

[Takakura&Suzuki: Mean-field Analysis on Two-layer Neural Networks from a Kernel Perspective. 

2024]

(+ Entropy regularization)

Theorem (informal)

More precisely, mean field Langevin dynamics



Label noise as regularization 24

Label noise: where ǁ𝜖𝑖
(𝑗)

∼ 𝑈([− 𝜎, 𝜎])

(no label noise)

- Label noise training

- First layer training

where

Degrees of freedom

Lemma [Takakura&Suzuki, 2024]

• Label noise training acts as Degrees of Freedom regularization.

• Mean field Langevin dynamics can optimize the objective. 



In-context learning
by Transformer 

25

Kim, Suzuki: Transformers Learn Nonlinear Features In Context: Nonconvex Mean-

field Dynamics on the Attention Landscape. arXiv:2402.01258.



In-context learning 26

Pretraining (𝑻 tasks)：

⋯
× 𝑇

 We observe pretraining 

task data 𝑇 times.

 Each task has 𝑛 data.

Test task (In-context learning)：

⋯

Predict

• The true function 𝐹𝑡 is different 

for different tasks.

• 𝐹𝑡 is randomly generated from 

some distribution. 

Model



Model: Nonlinear feature 27

Linear model with nonlinear features:

Mean field neural network:

[Ahn et al.: Linear attention is (maybe) all you need (to 

understand transformer optimization). arXiv:2310.01082]

We want to estimate the nonlinear feature 𝑓∘ by pretraining. 

Linear attention model

PredictQueryKeyValue

where 𝑣𝑡 ∼ 𝑁(0, 𝐼) and 𝑓∘ 𝑥 ∈ ℝ𝑘. 

⋯

𝑌1 𝑌2 𝑌𝑛

𝑥1 𝑥2 𝑥𝑛

MFNN

(ℎ𝜇)

Linear Attention

𝑦1,𝑡

ℎ𝜇(𝑥1,𝑡)

𝑦𝑖,𝑡

ℎ𝜇(𝑥𝑖,𝑡)

𝑦𝑛,𝑡

ℎ𝜇(𝑥𝑛,𝑡)

?

ℎ𝜇(𝑥qr,𝑡)
⋯ ⋯ Query

Key

Value

Prompt Linear attention



In-Context Learning (ICL) risk 28

There have been many work on optimization guarantee on 

ICL for linear model: Zhang et al., (2023), Mahankali et al. 

(2023), Guo et al. (2023) to name a few.

Our novelty: Optimization guarantee w.r.t. nonlinear 

feature learning (𝒉𝝁).

The expected ICL risk: 

Question：Can we optimize 𝜇, Γ by a gradient descent? 

（Infinite-dimensional non-convex problem）

(note that 𝑦𝑖,𝑡 = 𝑣𝑡
⊤𝑓∘(𝑥𝑖,𝑡))

Empirical ICL risk : 

→ Minimize with respect to 𝜇, Γ.

(Large sample limit: 𝑛 → ∞ and 𝑇 → ∞)



Two time scale dynamics 29

Assumption (realizability of the true feature)

There exists 𝜇∘ such that 𝑓∘ = ℎ𝜇∘ and Σ𝜇∘,𝜇∘ ∝ 𝐼𝑘.

Feature covariance

Two time-scale dynamics (𝚪 is optimized first): 

•

Wasserstein gradient flow to minimize 𝓛: 



Strict saddle 30

Theorem 1 (Strict saddle property of the loss landscape)

(1-1)

(1-2)

(2)

There exists a descent direction or negative curvature. 



Strict saddle 31

Theorem 1 (Strict saddle property of the loss landscape)

For an orthogonal matrix 𝐑 ∈ O(𝑘), define 𝑹#𝜇 as the push-forward 

of 𝜇 along the rotation 𝐑: 𝑎, 𝑤 ↦ 𝐑𝑎,𝑤 , i. e. , ℎ𝐑#𝜇 = 𝐑ℎ𝜇.

If 𝜇 ∈ 𝒫 is not the global minimum, then one of the followings holds: 

(1)

(2)

(1-1) There exists 𝐑 ∈ conv(O(𝑘)) such that 

Otherwise,  

(1-2) Furthermore, if 0 < ℒ 𝜇 < 𝑟∘/2, then 

There exists a descent direction or negative curvature. 

(1-1)

(1-2)

(2)



Behavior around the critical point 32

Let the “Hessian” at 𝜇 be 

Lemma 

The Wasserstein GF 𝜇𝑡 around a critical point 𝜇+ can be written as 

id + 𝜖𝑣𝑡 #𝜇
+ where the velocity field 𝑣𝑡 follows 

Negative curvature direction exponentially 

grows up! 

𝜇𝑡 moves away from the critical point. 

(c.f., Otto calculus)

Theorem (Informal) 

The solution is not captured by any critical point almost surely.
(The solution converges to the global optimal solution almost surely) 



Decay speed of objective 33

Suppose that 
d𝜇∘

d𝜇𝑡 ∞
≤ 𝑅 (which could be ensured by using birth-death 

process).  

Theorem (GF moves toward a descent direction (1)) 

Theorem (Accelerated convergence phase (2)) 

Once ℒ 𝜇𝑡 ≤
𝑟∘

2
− 𝜖 is satisfied, 

Theorem (Negative curvature around a saddle point (3)) 

Escape from the critical point exponentially fast. 



Numerical experiment 34

We compare 3 models with 𝑑 = 20, 𝑘 = 5, and 500 neurons with sigmoid act. 

All models are pre-trained using SGD on 10K prompts of 1K token pairs. 

1. attention: jointly optimizes ℒ(𝜇, Γ). 
2. static: directly minimizes ℒ(𝜇). 
3. modified: static model implementing birth-death & GP

→ verify global convergence as well as improvement for misaligned model 

(𝑘true = 7) and nonlinear test tasks 𝑔 𝑥 = max
𝑗≤𝑘

ℎ𝜇∘ 𝑥 𝑗 or 𝑔 𝑥 = ℎ𝜇∘ 𝑥
2
.



Conclusion

• Feature learning by 2-layer NN
Statistical analysis in high dimensional regression 

Optimization theory of in-context feature learning in 
Transformer

• [High dimensional regression]
 Optimal regularization via Degrees of Freedom reg

 Overfitting regime → Kernel regime

• [In-context feature learning by Transformer]
 The loss landscape is like strict saddle 

 The solution is hardly captured 
by a saddle point

35

(i)

(ii) Otherwise, 


