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Introduction

Task: given ntraining samples and p parameters to be estimated, charac-
terize the generalization performance of the empirical risk minimizer.

e Classical Large-sample Limit: n — oo under fixed p.

e Proportional Asymptotic Limit: n,p — oo, p/n — (0, 00).

Why do we care about the proportional limit?

e Modern machine learning systems are often overparameterized.

e Many interesting phenomena can be precisely analyzed in this regime.

This Talk: least squares regression in the overparameterized regime:

e (generalized) ridge regression: what is the optimal explicit regularization?

e (weighted) ridgeless interpolant: what is the optimal implicit regularization?
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On the Optimal Weighted ¢/, Regularization in
Overparameterized Linear Regression

Denny Wu and Ji Xu.
(NeurlPS 2020)
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e Rigorous explanation of the observation 04
that the optimal A in ridge regression
. 0.3
can be negative.
e Characterization of the optimal weighted 02
shrinkage under overparameterization. 01
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Surprises in Overparameterized Least Squares Regression

Motivating Example — Ridge Regression: given feature matrix X €
R"*9 and response y €R", estimate the true parameters via

6=(X"X+ M) IXTy.

What happens in the overparameterized regime, i.e. v = d/n > 17

e Intuition (classical): more overparameterized |~

— SNR=5

model (larger ) = more regularization

required (larger \). .
e Reality: without regularization (A — 0), the J J/i
population risk may decrease as - increases. e

Message: estimators in the overparamterized regime can generalize
(in the absence of explicit regularization)

e M. Belkin, D. Hsu, S. Ma, S. Mandal. Reconciling modern machine learning and the bias-variance trade-off.
e T. Hastie, A. Montanari, S. Rosset, R. Tibshirani. Surprises in high-dimensional ridgeless interpolation.
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Implicit Regularization of Overparameterization

One explanation: overparameterization = implicit ¢, regularization (7)

Example: Let y; = x;' 0, + &, where x; ES) N(O0, ;). Let y =d/n>1and §
be the minimum ¢> norm solution,
E[|6131X] = 164113/ + Var(e) /(v = 1), as n,d — oo
which is a decreasing function of ~.
Rough intuition: larger v & stronger (implicit) /> regularization.

Question: Can optimal regularization be negative (A < 0) when d > n?

e Empirically? Yes! “Negative ridge” phenomenon [Kobak et al. 2020].

e Theoretically? Not yet! Requires more general setup (this work).

e Kobak et al. 2020. Optimal ridge penalty for real-world high-dimensional data can be zero or
negative due to the implicit ridge regularization.
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Problem Setup and Assumptions

e Data model: y; = x,'0, +¢;,, 1 <i<n; x; € R,

e Estimator: generalized ridge regression

0y = (XTX+22,) X Ty.

e Goal: characterize the prediction risk R(6)) = Egz0, (7 — X' 6))2.

Remark: When \ >0, 8§, = argming Y., (vi — x,-TO)2 +2073,06.

Basic Assumptions (Al):

e Proportional Asymptotics: n,d — oo, d/n — v € (1,00).
e Random Design: x; = z,-Ei/Z/ﬁ, Z; iy P, with zero-mean and
bounded 12th moment. E[¢] = 0, Var(g) = o2.

e General Prior: E[0.0]] = X,. Note that this assumption covers both
deterministic and random 6,.
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Motivation: Generalized Ridge Regression

e Known formulation, but analysis under overparameterization lacking.

e For A\ > 0, equivalent to Gaussian prior with general covariance on 6.

The formulation covers:

e Standard ridge regression: X, = /.

e Principal Component Regression (PCR): discard lower eigendirections by
applying large penalty.

e Algorithms in Deep Learning: connection to decoupled weight decay and
elastic weight consolidation.

Motivation of This Work:

e What is the optimal weighting matrix X, for the prediction risk?

e Can we show the benefit of weighted shrinkage over other approaches?

e |. Loshchilov, F. Hutter, Decoupled weight decay regularization.

e Kirkpatrick et al. 2017. Overcoming catastrophic forgetting in neural networks.
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Motivation: Anisotropic Prior

For standard ridge regression, A is provably non-negative under
e Isotropic signal Xy = Iy [Dobriban and Wager 2018].
e Isotropic data 3, = Iy [Hastie et al. 2019].

Motivation of This Work:
e Can we precisely characterize the “negative ridge” phenomenon?

Relation between 3, and Xy is analogous to the source condition in
RKHS literature: E[| 25 /%0, || < co.

Motivation of This Work:
e How does the alignment between X, and 3y (« in source condition)

affect the optimal regularization strength A\?

e Concurrent work: Richards, D., Mourtada, J. and Rosasco, L., 2020. Asymptotics of
Ridge (less) Regression under General Source Condition.
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Benefit of General Setup

“Multiple Descent” Risk Curve 10

v experiment
theory

e By manipulating 3, and Xy, the prediction
risk can be highly non-monotonic

risk

w.r.t. 7, i.e. level of overparameterization.

Remark: when X, is isotropic, the risk does not exhibit
multiple peaks for v > 1.

y=din
Epoch-wise Double Descent
—— GD iterates
e Gradient descent (flow) on the least squares ~ °°
objective may lead to prediction risk %07
non-monotonic in time, even if o = 0.
0.6
Remark: when X or 3y is isotropic, the bias term is
monotonically decreasing through time. time
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Alignment between Feature and Signal

(A2) Converging Eigenvalues: empirical distributions of (d, ,,, dye) jointly converge to
bounded r.v. (vy/y,Vwg), Where v,/ > ¢; >0, dyp = diag(Ux/WEb/ZEQEh/ZUXT/W),

1/22X2;1/2'

and d,,, and U, are eigenvalues and eigenvectors of 3,
Intuition: when 3, = I; (i.e., standard ridge regression),

e d., (orv,): eigenvalues of 3,.

e d,y (or uy,p): projection of target 3. onto eigenvectors of X,.

Definition of Alignment: For a, b € RY, we say a is aligned (misaligned)
with b when a; > a; iff b; = b; for all i,].

B Exx]
isotropic 6

B D]
aligned 6

B Exx]
misaligned 6*

rd

Isotropic (previous work).  Aligned (easy problem).  Misaligned (hard problem).
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Characterization of Prediction Risk

Thm. Under (A1-2), the asymptotic prediction risk R(fy) is given as
N/ _Ta 2 m' (=X _ -
E(y = T0A> LA 2((_>\))(’7E[UX/WUW9(’UX/W-ITI(—)\) +1)7?] + 52 ),

bias

variance
VA > —cg, where ¢g = (,/7—1)?c;, and m(z) > 0'is the Stieltjes transform
of the limiting distribution of the eigenvalues of X3 1 X T.
2.0 — 10
1.8 3, =351
Tu=3y 0.9
16 — prediction
0.8
L0.7
0.6
5 20 25 05 5 20 25
y=din y=din
A=0.

A=0.1.
e Regularization suppresses the double descent peak [Krogh and Hertz 1992].

e Weighted regularization often dominates standard isotropic shrinkage (red).
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When is Optimal )\, Negative?

Theorem (informal). When the risk is dominated by the bias term,
® \opt < 0 when d,/, is aligned with d,.
® \opt > 0 when d, /,, is misaligned with d,g.

e \opt = 0 when the order is random, i.e. E[vyg|vwx] = E[vwe]-

Example: Consider 3y = X7, then for the bias term Agpt E 0 iff r E 0.

0.60
03 08 0.55
0.4 07 030
0.45
0.6
0.3 0.40
0.5 0.35
0.2 ical 0.30
=05 0.0 405 10 15 0455 00 505 10 15 -05 00 05 10 15
(a) Aligned, noiseless (b) Misaligned, noiseless (c) Random, noiseless

Remark: for the variance term Aot is always non-negative.
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When is Optimal )\, Negative?

Comparison with previous works: when X, = I or 3y = Iy,

o )\t =0 if 0 =0, i.e. interpolation is optimal when label is clean.

o X\t > 0if 0 >0, i.e. positive regularization is required for noisy data.

Our findings under more general setup: given ¥, = I,

e Negative \ is beneficial when features are useful (“easy” problem);
consequently, interpolation can be optimal even if o > 0.

e Positive \ is beneficial under misalignment (“hard” problem), even in

the absence of label noise (o = 0).

Bias-variance Tradeoff: as o increases, the variance term eventually
dominates, and Agpe becomes positive.
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Properties of A\, and the Optimal Risk

[Proposition: when v < 1, Aopt is always non-negative under (Al1-2). ]

Message: “negative ridge” is a unique feature of overparameterization.

J—a=—2—a=2 /

Implicit /> Regularization: e —act)

Consider X, = Iy and ¥y = X¢. AU:‘
Note that larger o = more aligned problem. "

—_—a=0

e When a > 0 (aligned), Aopt decreases as ~y

increases; vice versa. o--SNRé=5

— Noiseless 7 = 0

v Aope=yollc

Prop. (informal). Given 3y o 11y and 2, = Iy,
the optimally regularized prediction risk R(Aopt)
is an increasing function of v € (0, 00).

Monotonicity of Optimal Risk R(Aopt): f/ —

Message: Optimal ridge regularization (purple)
can suppress multiple descent.

05 1.0 15 2.0
yt=nlp
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Optimal Weighting Matrix X,

Questions we aim to address:
e What is the optimal X,, that minimizes min,\R(OA,\)?

e What is the best 3, we can construct when knowledge on the true

parameters 6, is not available?

(A3) Codiagonalizability: 3, = UD,U" and X, = UD,U", where
UcR™ s orthogonal, and D, = diag(dx), D, = diag(dw).

(A4) Converging Eigenvalues: the empirical distributions of (dx, dy, d. )
jointly converge to non-negative randomly variables (vx, vg, Ux/w) upper- and
lower-bounded away from 0, in which we defined dy = diag(U" =, U).

Remark: when Xy is also codiagonalizable with X, dy corresponds to its

eigenvalues, i.e. 3p = UDyU" and diag(Dy) = dy.
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Optimal Weighting Matrix ¥, (continued)

Thm. ;! = Udiag(&.g) UT is optimal
among all X, satisfying (A3-4).

e Matches the maximum a posteriori estimate.

e Requires knowledge of 3¢ (not practical).

Question: is there a reasonable ¥, based on X,
which can be estimated from unlabeled data?

Coro. X! = f(X,) is optimal among all
3. only depending on X, where f(vy) =
E[vg|vx] applies to the eigenvalues.

e Heuristic: approximate f with polynomial i
function and cross-validate the parameters. T

e When E[vg|vx] = E[vg], X = Iy is reasonable. Proposed heuristic.
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Discussion and Conclusion

By analyzing generalized ridge regression under general setup,

e \We determine the sign of the optimal ridge regularization.
e Negative ridge can be beneficial under aligned (“easy”) problem.

e We characterize the optimal explicit regularization ¥,.

-3 -2 -1 0 1

Future Directions:

—— trained 2nd layer

e Estimate 3, based on training samples.

e Extend result to more complicated models,

prediction risk

e.g. random features model and neural net.

—— trained 1st layer

Remark: benefit of negative regularization is also ~ -01 00 01 02 03
ridge parameter A
empirically observed in RF model (red). two-layer neural network.

Question: what about implicit regularization, i.e. A\ — 07
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When Does Preconditioning Help or Hurt Generalization?

Shun-ichi Amari, Jimmy Ba, Roger Grosse, Xuechen Li,
Atsushi Nitanda, Taiji Suzuki, Denny Wu, Ji Xu.

(ICLR 2021)

1.4
v P=l4(GD)
. . . 12| « p=3;!(NGD)
e Precise error analysis of preconditioned [
1.0 o
. . . —— prediction
least squares regression (ridgeless) in the 508
. . 3
overparameterized regime. 06
e Empirical validation of theoretical 0.4 =
findings in neural networks. O 0 TG

extent of misalignment ‘(-r)
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Preconditioned Gradient Descent

[ Update rule: ;.1 = 0, —nP(t)Ve,L(fp,), t=0,1,.... ]

Common choices of preconditioner P and corresponding algorithm:

e Inverse Fisher information matrix = natural gradient descent (NGD).
e Certain diagonal matrix = adaptive gradient methods (e.g. Adagrad, Adam).

Geometric Intuition: alleviate the effect of pathological curvature (using
2nd order information) and speed up optimization.

@L@ ‘(M
N)

>¢|

Figure from Xanadu blog post.

Question: how does preconditioning affect generalization?
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Motivation: Implicit Bias of Optimizers

In the online learning setup, efficient optimization ~ good generalization.

This work: learning a fixed dataset, possibly achieving zero training loss.

02 E /A\
neural nets) are often overparameterized. o 5 3

O\
e Overparameterized models may interpolate  Z-02) — ¢,
training data in different ways. 04| == imlizain

training data

Implicit Bias in Interpolants

e Modern machine learning models (e.g.

label (model output)

o P affects the properties of the interpolant. oo

5 0
input data

Motivation of This Work:
e In the interpolation setting (i.e. absence of explicit regularization),

how does preconditioning influence the generalization performance?
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Implicit Bias in Overparameterized Linear Regression

Motivating Example: preconditioned gradient descent (PGD) on the
overparameterized least squares objective: L(8) = 1|y — XBH;

Stationary Solution (t — c0):

o Gradient descent: min />-norm solution.

e Preconditioned GD: for time-independent and
full-rank P, min ||| p—1 norm solution.

Common Argument: min />-norm solution generalizes
well = GD (P =1y) is better (e.g. [Wilson et al. 2017]).

Question: Why is the ¢, norm the right measure for generalization?

Motivation of This Work:
e In simplified settings, can we determine the optimal preconditioner

that leads to the lowest generalization error?
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Preconditioned Linear Regression: Problem Setup

e Data Model: E[xx'] = %,; X € R"™? n,d - 0o and d/n — v > 1.
e Gradient Update: d6(t) = 1P(t)XT(y — X6(t))dt, 6(0) =0.

Consider natural gradient descent (NGD) as an example. Given data distribu-
tion and model p(X,y|0) = p(X)p(y|fo(X)).

F = E[V log p(X,y|8)Ve log p(X,y|0) ] = —E[V§ log p(X, |6)].
The NGD update direction is then given by F™'VyL(X, fp).

Remark: for squared loss, the Fisher reduces to E[J{ Js] [Martens 2014].

For least squares regression, many preconditioners are time-invariant:
e Sample Fisher (Hessian) < sample covariance X" X/n.

e Population Fisher < population covariance X,.

We thus limit our analysis to fixed preconditioners P(t) =: P.
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Stationary Solution of Preconditioned Regression

For positive definite P, the gradient flow trajectory is described by
6p(t) = PX" [I, - exp(—fxpr)] (XPXT) 1y,
n
and the stationary solution @p is the min ||@||,_1 norm interpolant:

Op = lim 0p(t) = PX " (XPX ")y = argmingy_, [|0]| .
— 00

Noticeable examples of preconditioned update:

e Identity: P=1, gives the min /> norm interpolant °7 —
(also true for momentum GD and SGD). ?2;: Sample NGD
e Population Fisher: P = F~! = X1, Sos0

e Sample Fisher: P = (XTX +Xg)"or (XTX)T Zs
results in the min £> norm solution (same as GD). 4

time
Remark: population Fisher can be estimated from extra unlabeled data.

For parametric approximations see talk this afternoon!
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Implicit Bias of Natural Gradient Descent

Starting from zero initialization:

e GD solution €, has small parameter norm ||6|,.

e NGD solution ¢ 1 has small function norm Epx[f(x)?] = ||9||22X

e Sample Fisher-based updates behaves similar to GD.

Similar findings also empirically observed in simple neural networks:

N

Ilabel (model output)

— 6D
— NGD
—— sqrtNGD

-0.4{ ==~ initialization
training data

-20 -15 -0 510

50
input data

1D illustration.

5

[IW(t) = W(0)| |2

=
1)
d

1072

107 — GD
—— NGD

104 —— sqrt NGD
—— sample NGD

10°

11fit) = O 2.,

i
5}

steps

Parameter difference.

steps

Function difference.

Question: How does this difference translate to the generalization performance?

Implicit Bias of Preconditioned Gradient Descent
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Bias-variance Decomposition

e Student-teacher setup: labels are generated by a teacher model
(target function) with additive noise: y; = f.(x;) + &;.

e Goal: determine the optimal preconditioner P under different
conditions of label noise and teacher model.

Key observation: )l\in%(XTX+>\P*1)TXTy = PXT(XPXT) y.
—

= It suffices to analyze the ridgeless limit of generalized ridge regression.

Bias-variance Decomposition:

R(6) = Ep, [(f*(x) — x "Ep_[6])%] + tr(Cov(8)Zy) .
B(6), bias V(0), variance

e Variance term is due to the /abel noise (independent to the teacher).

e Bias term only depends on the teacher model and data distribution.
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Variance Term: NGD is Optimal

Thm. Given (Al-2), the variance is mini-

mized by NGD: P = F~1 =31

v P=14(GD)

. P32
prediction

Message: when labels are noisy (risk is

dominated by variance), NGD is beneficial. 1

Remark: Note that population Fisher is required.

variance

e P=33'(NGD)

15 2.0 2.5 3.0
y=din

Two-layer MLP: student-teacher setup (distillation)

ol & o 30

14 —— NGD (100000)

~
&

X~
v 4
« x
20
1
2 >
© ©
c c 15
o o
B 3
a @

»

0.000.250.500.751.001.251.501.75 2.00
Noise Standard Deviation

—— GD

+— NGD (10000)
—— NGD (20000)
—e— NGD (50000)
—e— NGD (100000)

0.00 0.25 0.50 0.75 1.00 125 150 1.75 2.00
Noise Standard Deviation

e Left: NGD (population Fisher) achieves lower risk under large label noise.
e Right: sample Fisher (i.e. less unlabeled data used) behaves like GD.

Implicit Bias of Preconditioned Gradient Descent
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Misspecification ~ Label Noise

Misspecified Model: f,.(x) = x"6, + £(x); the 29 . 7.,
residual £S cannot be learned by the student. e
Intuition: £ is “similar” to additive label noise.

1.5

Message: NGD is beneficial under misspecification.

extent of nonfnearity

Misspecification in Neural Networks

e Student: two-layer MLP; Teacher: ResNet-20 at varying training epochs.

e Heuristic measure of misspecification: \/y " K—1y/n, where K is the neural
tangent kernel (NTK) matrix of the student.

6 Teacher Pretrain Iters.
—4— GD 10* 10¢ 10° 0
o 51 ¥ NeD (100000) 501 —— Label Noise
3
E 45
> g0
ot "AB 5
-E : é‘ 30
2
g 2 ‘?z 5
1 2.0
15 —}— Misspecification
10t 102 102 10t 0.0 0.2 0.4 0.6 0.8 1.0
Teacher Pretrain Iters. Noise Standard Deviation
Misspecification on CIFAR-10. Measure of misspecification.
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Bias Term: the Well-specified Case

Well-specified Model: f,(x) = x"6,. General prior: E[0.0] = %.
{Thm. Under (A1,3,4), the bias is minimized by P=U diag(U" =y U) UT.}

No-free-lunch: the optimal P is usually not known a priori.

e GD generalizes better when target is isotropic Xy = Iy. = o)
o a _ isotropic 6°
e NGD is optimal under misalignment X, = 3. " missignedo”

Example (source condition). When Xy = X/, there ex-
ists a transition point r* € (—1,0) s.t. GD achieves lower
(higher) bias than NGD when r > (<) r*.

r

1.4
v P=I4(GD) —+- 6D
12{ o p=3;' (NGD) X“’” — NGD (60000)
. poy2 &
1.0 P=z 4
—— prediction -
0 e
©0.8 o
a s
0.6 B
n
0.4
0.2

90 02 04 06 08 10 —1.(yo.yo.&o.ﬁ(;.&o.s—o.wo.z—o2
extent of misalignment (-r)

Linear regression. Two-layer MLP (MNIST).
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Bias-variance Tradeoff: Interpolating between P

The optimal P for the bias and variance are in general different.
Question: how can we trade in one of bias/variance for the other?
Example: Consider Xy = Iy, X« # 4, and the following interpolation schemes:

e Additive: P, = (aXZ.+(1—a)ly) ™", corresponds to the damped inverse.
e Geometric: P, =3, covers the “conservative’ square-root scaling.

Proposition (informal). The stationary bias/variance is monotonically
increasing/decreasing w.r.t. « in a certain range between 0 and 1.

= At certain SNR, interpolating between GD and NGD is beneficial.

—— bias
variance

200 damp=10.0
- damp=1.0

035 o geometric /S | T gmened Fao
*  additive @ L3 —— damp=0.001 <
0.30 2 2125| ¢ gamp=0.0001 230
§ g 10.0 g
0.25 = 2 s o 220
3 & &
0.20 3 50 = 10
® 250 0w f,4"
0.15 — o
675 035 030 075 100 125 150 175 200 50 025 050 075 100 135 150 175 200
GD interpolation coefficient NGD Noise Standard Deviation Noise Standard Deviation
Monotonicity of Additive interpolation Geometric interpolation
bias/variance. (MLP). (MLP).
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Bias-variance Tradeoff: Early Stopping

We have thus far only looked at the stationary solution (t — c0).

Question: what about algorithmic regularization such as early stopping?

Proposition (informal). Define B°**(6)=inf,>0B(0(t)). Under (Al-4),

1. the variance V/(0p(t)) monotonically increases through time.
2. when Xy =31 (misaligned), B°**(0p) > B°*"(0¢-1).
3. when Xg =14 (isotropic), B°**(8;) < B°**(0¢-1).

e (1) suggests that early stopping is beneficial when ©°7 —

o70| | — NeD

Sample NGD

data is noisy (due to reduction of variance).

1)
@
&

o

60/

e (2-3) suggests that early stopping may not alter

°
o
v

population risk

the comparison of the well-specified bias (between s
GD and NGD). o4

time

Question: What about the early stopping time, i.e. number of steps
(efficiency) needed to achieve the optimal population risk?
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RKHS Regression: Fast Decay of Population Risk

Aim to show: preconditioning = efficient reduction of population risk.
e Model: y; =*(x;) +¢;. S:H — La(Px). X =5*S; L=55".
e Optimization: f; = f,_; —7](Z+al)_1(fft,1 — & Y), fo=0. f; € H.

Remark: the population Fisher corresponds to the covariance operator X.. The

update is thus an additive interpolation between GD and NGD.

Assumptions:

e Source Condition: 3re(0,00) s.t. f*=L"h" for some h* € L»(Px).

e Capacity Condition: 3s > 1 s.t. tr <21/5> <ooand 2r+st>1.

e Regularity of RKHS: 31 € [s7*,1], C, > 0 s.t. sup, [|[ T2 K,||3 < C,..

Remark: source condition relates to the previously discussed alignment:

Large r = smoother teacher model, i.e. "easier’ problem; vice versa.
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Fast Decay of Population Risk (continued)

Theorem (informal). Given u<2r or r >1/2, for sufficiently large n, precon-

ditioned update with o = n™ 2551 achieves the minimax optimal convergence
~ __2rs .

rate R(f) = ||Sf; — f*Hfz(PX) = O(n 2rs+1) in t = ©(log n) steps, whereas

2rs
ordinary gradient descent requires t:@(ansﬂ) steps.

Remark: similar to the role of momentum [Pagliana and Rosasco 2019].

e The optimal interpolation coefficient o and stopping time t are chosen
to balance the bias and variance.
e « increases with r — NGD is advantageous for “hard” problems.

—_ A=1e0 | — A=1e0
— A=1le-4 — A=1le-4
A=1le-8 A=1le-8

population risk
population risk

steps steps

r =3/4 (“easy” problem). r=1/4 ("hard” problem).
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Discussion and Conclusion

Overparameterized Least Squares Regression:

e |dentified factors that impact the generalization of ridgeless interpolant.
e NGD is advantageous under noisy labels or misaligned (“hard”) problem.

e Discussed how bias-variance tradeoff can be realized.

RKHS Regression: preconditioned update achieves minimax optimal
rate in much fewer steps (i.e. faster decay in population risk).

Neural Networks: empirical trends matching our theoretical analysis.

Future Directions:

e Understand time-varying preconditioners (e.g. adaptive methods)

e Characterize additional factors (step size, explicit regularization, etc.)

Caution: properties of linear or kernel model may not
translate to neural network...

See talks this afternoon!
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