Explicit and Implicit Regularization in Overparameterized Least Squares Regression

Denny Wu

University of Toronto Vector Institute for Artificial Intelligence https://www.cs.toronto.edu/~dennywu/

Introduction

- Wu, D. and Xu, J., "On the optimal weighted ℓ_2 regularization in overparameterized linear regression." NeurIPS 2020.
- Amari, S., Ba, J., Grosse, R., Li, X., Nitanda, A., Suzuki, T., Wu, D., and Xu, J., "When does preconditioning help or hurt generalization?" ICLR 2021.

Shun-ichi Amari

Jimmy Ba

Roger Grosse

Xuechen Li

Atsushi Nitanda

Taiji Suzuki

Ji Xu

Introduction

Task: given *n* training samples and *p* parameters to be estimated, characterize the **generalization performance** of the empirical risk minimizer.

- Classical Large-sample Limit: $n \to \infty$ under fixed p.
- Proportional Asymptotic Limit: $n, p \to \infty$, $p/n \to (0, \infty)$.

Why do we care about the proportional limit?

- Modern machine learning systems are often overparameterized.
- Many interesting phenomena can be precisely analyzed in this regime.

This Talk: least squares regression in the overparameterized regime:

- (generalized) ridge regression: what is the optimal explicit regularization?
- (weighted) ridgeless interpolant: what is the optimal implicit regularization?

Introduction 3 / 35

On the Optimal Weighted ℓ_2 Regularization in Overparameterized Linear Regression

Denny Wu and Ji Xu.

(NeurIPS 2020)

- Rigorous explanation of the observation that the optimal λ in ridge regression can be negative.
- Characterization of the optimal weighted shrinkage under overparameterization.

Surprises in Overparameterized Least Squares Regression

Motivating Example – Ridge Regression: given feature matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$ and response $\mathbf{y} \in \mathbb{R}^n$, estimate the true parameters via

$$\hat{\boldsymbol{\theta}} = (\boldsymbol{X}^{\top} \boldsymbol{X} + \lambda \boldsymbol{I}_d)^{-1} \boldsymbol{X}^{\top} \boldsymbol{y}.$$

What happens in the overparameterized regime, i.e. $\gamma = d/n > 1$?

- Intuition (classical): more overparameterized model (larger γ) \Rightarrow more regularization required (larger λ).
- **Reality:** without regularization ($\lambda \to 0$), the population risk may **decrease** as γ increases.

Message: *estimators in the overparamterized regime can generalize* (in the absence of explicit regularization)

- M. Belkin, D. Hsu, S. Ma, S. Mandal. Reconciling modern machine learning and the bias-variance trade-off.
- T. Hastie, A. Montanari, S. Rosset, R. Tibshirani. Surprises in high-dimensional ridgeless interpolation.

Implicit Regularization of Overparameterization

One explanation: overparameterization \Rightarrow implicit ℓ_2 regularization (?)

Example: Let $y_i = \mathbf{x}_i^{\top} \mathbf{\theta}_{\star} + \varepsilon_i$, where $\mathbf{x}_i \overset{\text{i.i.d.}}{\sim} \mathcal{N}(\mathbf{0}, \mathbf{I}_d)$. Let $\gamma = d/n > 1$ and $\hat{\mathbf{\theta}}$ be the minimum ℓ_2 norm solution,

$$\mathbb{E}[\|\hat{\boldsymbol{\theta}}\|_2^2|\boldsymbol{X}] \to \|\boldsymbol{\theta}_\star\|_2^2/\gamma + \mathsf{Var}(\varepsilon)/(\gamma-1), \quad \text{as } n,d \to \infty$$

which is a decreasing function of γ .

Rough intuition: larger $\gamma \approx$ stronger (implicit) ℓ_2 regularization.

Question: Can optimal regularization be **negative** ($\lambda < 0$) when d > n?

- Empirically? Yes! "Negative ridge" phenomenon [Kobak et al. 2020].
- Theoretically? Not yet! Requires more general setup (this work).
- Kobak et al. 2020. Optimal ridge penalty for real-world high-dimensional data can be zero or negative due to the implicit ridge regularization.

Problem Setup and Assumptions

- Data model: $y_i = \mathbf{x}_i^{\top} \boldsymbol{\theta}_{\star} + \varepsilon_i, \ 1 \leq i \leq n; \ \mathbf{x}_i \in \mathbb{R}^d$.
- Estimator: generalized ridge regression

$$\hat{\boldsymbol{\theta}}_{\lambda} = \left(\boldsymbol{X}^{\top} \boldsymbol{X} + \lambda \boldsymbol{\Sigma}_{w} \right)^{\dagger} \boldsymbol{X}^{\top} \boldsymbol{y}.$$

• Goal: characterize the prediction risk $R(\hat{\theta}_{\lambda}) = \mathbb{E}_{\tilde{x}, \tilde{\epsilon}, \theta_{\star}} (\tilde{y} - \tilde{x}^{\top} \hat{\theta}_{\lambda})^2$.

Remark: When $\lambda \geq 0$, $\hat{\theta}_{\lambda} = \arg\min_{\theta} \sum_{i=1}^{n} (y_i - \mathbf{x}_i^{\top} \theta)^2 + \lambda \theta^{\top} \Sigma_w \theta$.

Basic Assumptions (A1):

- Proportional Asymptotics: $n, d \to \infty$, $d/n \to \gamma \in (1, \infty)$.
- Random Design: $\mathbf{x}_i = \mathbf{z}_i \Sigma_{\mathbf{x}}^{1/2} / \sqrt{n}$, $\mathbf{z}_i \overset{\text{i.i.d.}}{\sim} P_{\mathbf{z}}$ with zero-mean and bounded 12th moment. $\mathbb{E}[\varepsilon] = 0$, $\text{Var}(\varepsilon) = \sigma^2$.
- General Prior: $\mathbb{E}[\theta_*\theta_*^{\top}] = \Sigma_{\theta}$. Note that this assumption covers both $\underline{deterministic}$ and $\underline{random} \ \theta_*$.

Motivation: Generalized Ridge Regression

- Known formulation, but analysis under **overparameterization** lacking.
- For $\lambda > 0$, equivalent to Gaussian prior with **general covariance** on $\hat{\theta}$.

The formulation covers:

- Standard ridge regression: $\Sigma_w = I_d$.
- Principal Component Regression (PCR): discard lower eigendirections by applying large penalty.
- Algorithms in Deep Learning: connection to decoupled weight decay and elastic weight consolidation.

Motivation of This Work:

- What is the optimal weighting matrix Σ_w for the prediction risk?
- Can we show the benefit of weighted shrinkage over other approaches?
- I. Loshchilov, F. Hutter, Decoupled weight decay regularization.
- Kirkpatrick et al. 2017. Overcoming catastrophic forgetting in neural networks.

Motivation: Anisotropic Prior

For standard ridge regression, λ is **provably non-negative** under

- Isotropic signal $\Sigma_{\theta} = I_d$ [Dobriban and Wager 2018].
- Isotropic data $\Sigma_{\times} = I_d$ [Hastie et al. 2019].

Motivation of This Work:

• Can we precisely characterize the "negative ridge" phenomenon?

Relation between Σ_{x} and Σ_{θ} is analogous to the **source condition** in RKHS literature: $\mathbb{E}\|\Sigma_{x}^{-\alpha/2}\theta_{*}\|<\infty$.

Motivation of This Work:

- How does the *alignment* between Σ_x and Σ_θ (α in source condition) affect the optimal regularization strength λ ?
- Concurrent work: Richards, D., Mourtada, J. and Rosasco, L., 2020. Asymptotics of Ridge (less) Regression under General Source Condition.

Benefit of General Setup

"Multiple Descent" Risk Curve

• By manipulating $\Sigma_{\mathbf{x}}$ and Σ_{θ} , the prediction risk can be highly **non-monotonic** w.r.t. γ , i.e. level of overparameterization.

Remark: when Σ_x is isotropic, the risk *does not* exhibit multiple peaks for $\gamma > 1$.

Epoch-wise Double Descent

• Gradient descent (flow) on the least squares objective may lead to prediction risk **non-monotonic in time**, even if $\sigma = 0$.

Remark: when Σ_{\times} or Σ_{θ} is isotropic, the bias term is monotonically decreasing through time.

Alignment between Feature and Signal

(A2) Converging Eigenvalues: empirical distributions of $(\mathbf{d}_{x/w}, \mathbf{d}_{w\theta})$ jointly converge to bounded r.v. $(v_{x/w}, v_{w\theta})$, where $v_{x/w} \geq c_l > 0$, $\mathbf{d}_{w\theta} = \mathrm{diag} \left(\mathbf{U}_{x/w} \boldsymbol{\Sigma}_w^{1/2} \boldsymbol{\Sigma}_{\theta} \boldsymbol{\Sigma}_w^{1/2} \mathbf{U}_{x/w}^{\top} \right)$, and $\mathbf{d}_{x/w}$ and $\mathbf{U}_{x/w}$ are eigenvalues and eigenvectors of $\boldsymbol{\Sigma}_w^{-1/2} \boldsymbol{\Sigma}_x \boldsymbol{\Sigma}_w^{-1/2}$.

Intuition: when $\Sigma_w = I_d$ (i.e., standard ridge regression),

- $d_{x/w}$ (or $v_{x/w}$): eigenvalues of Σ_x .
- $d_{w\theta}$ (or $v_{w\theta}$): projection of target β_* onto eigenvectors of Σ_{x} .

Definition of Alignment: For $a, b \in \mathbb{R}^d$, we say a is aligned (misaligned) with b when $a_i \ge a_i$ iff $b_i \ge b_i$ for all i,j.

Isotropic (previous work).

Aligned (easy problem).

Misaligned (hard problem).

Characterization of Prediction Risk

Thm. Under (A1-2), the asymptotic prediction risk $R(\hat{\theta}_{\lambda})$ is given as

$$\tilde{\mathbb{E}}\Big(\tilde{\mathbf{y}} - \tilde{\mathbf{x}}^{\top}\hat{\boldsymbol{\theta}}_{\lambda}\Big)^{2} \overset{p}{\to} \frac{m'(-\lambda)}{m^{2}(-\lambda)}\Big(\underbrace{\gamma\mathbb{E}[\upsilon_{\mathbf{x}/\mathbf{w}}\upsilon_{\mathbf{w}\theta}(\upsilon_{\mathbf{x}/\mathbf{w}}\cdot\mathbf{m}(-\lambda)+1)^{-2}]}_{bias} + \underbrace{\tilde{\sigma}^{2}}_{variance}\Big),$$

 $\forall \lambda > -c_0$, where $c_0 = (\sqrt{\gamma} - 1)^2 c_I$, and m(z) > 0 is the *Stieltjes transform* of the limiting distribution of the eigenvalues of $\boldsymbol{X} \boldsymbol{\Sigma}_w^{-1} \boldsymbol{X}^\top$.

- Regularization suppresses the double descent peak [Krogh and Hertz 1992].
- Weighted regularization often dominates standard isotropic shrinkage (red).

When is Optimal λ_{opt} Negative?

Theorem (informal). When the risk is dominated by the bias term,

- $\lambda_{\text{opt}} < 0$ when $d_{x/w}$ is aligned with $d_{w\theta}$.
- $\lambda_{\text{opt}} > 0$ when $d_{x/w}$ is **misaligned** with $d_{w\theta}$.
- $\lambda_{\text{opt}} = 0$ when the order is **random**, i.e. $\mathbb{E}[v_{w\theta}|v_{wx}] \stackrel{\text{a.s.}}{=} \mathbb{E}[v_{w\theta}]$.

Example: Consider $\Sigma_{\theta} = \Sigma_{x}^{r}$, then for the *bias* term $\lambda_{opt} \gtrsim 0$ iff $r \gtrsim 0$.

Remark: for the *variance* term λ_{opt} is always **non-negative**.

When is Optimal λ_{opt} Negative?

Comparison with previous works: when $\Sigma_x = I_d$ or $\Sigma_\theta = I_d$,

- $\lambda_{\rm opt}=0$ if $\sigma=0$, i.e. interpolation is optimal when label is clean.
- $\lambda_{\rm opt} > 0$ if $\sigma > 0$, i.e. positive regularization is required for noisy data.

Our findings under more general setup: given $\Sigma_w = I_d$,

- Negative λ is beneficial when features are useful ("easy" problem); consequently, interpolation can be optimal even if $\sigma > 0$.
- Positive λ is beneficial under misalignment ("hard" problem), even in the absence of label noise ($\sigma = 0$).

Bias-variance Tradeoff: as σ increases, the variance term eventually dominates, and $\lambda_{\rm opt}$ becomes positive.

Properties of λ_{opt} and the Optimal Risk

Proposition: when $\gamma < 1$, λ_{opt} is always *non-negative* under (A1-2).

Message: "negative ridge" is a unique feature of overparameterization.

Implicit ℓ_2 Regularization:

Consider $\Sigma_w = I_d$ and $\Sigma_\theta = \Sigma_\chi^\alpha$. Note that larger $\alpha \Rightarrow$ more aligned problem.

• When $\alpha > 0$ (aligned), $\lambda_{\rm opt}$ decreases as γ increases; vice versa.

Monotonicity of Optimal Risk $R(\lambda_{opt})$:

Prop. (informal). Given $\Sigma_{\theta} \propto \frac{1}{d} I_d$ and $\Sigma_w = I_d$, the *optimally regularized* prediction risk $R(\lambda_{\text{opt}})$ is an **increasing** function of $\gamma \in (0, \infty)$.

Message: Optimal ridge regularization (purple) can *suppress multiple descent*.

Optimal Weighting Matrix $\Sigma_{\scriptscriptstyle W}$

Questions we aim to address:

- What is the optimal Σ_w that minimizes $\min_{\lambda} R(\hat{\theta}_{\lambda})$?
- What is the best Σ_w we can construct when knowledge on the true parameters θ_* is not available?
- (A3) Codiagonalizability: $\Sigma_x = UD_xU^{\top}$ and $\Sigma_w = UD_wU^{\top}$, where $U \in \mathbb{R}^{d \times d}$ is orthogonal, and $D_x = \operatorname{diag}(d_x)$, $D_w = \operatorname{diag}(d_w)$.
- (A4) Converging Eigenvalues: the empirical distributions of $(d_x, \bar{d}_\theta, d_{x/w})$ jointly converge to non-negative randomly variables $(v_x, v_\theta, v_{x/w})$ upper- and lower-bounded away from 0, in which we defined $\bar{d}_\theta = \text{diag}(U^\top \Sigma_\theta U)$.

Remark: when Σ_{θ} is also codiagonalizable with Σ_{\times} , \bar{d}_{θ} corresponds to its eigenvalues, i.e. $\Sigma_{\theta} = \mathbf{U} \mathbf{D}_{\theta} \mathbf{U}^{\top}$ and $\operatorname{diag}(\mathbf{D}_{\theta}) = \bar{d}_{\theta}$.

Optimal Weighting Matrix $\Sigma_{\scriptscriptstyle W}$ (continued)

Thm. $\Sigma_w^{-1} = \boldsymbol{U} \operatorname{diag}(\bar{\boldsymbol{d}}_{\theta}) \boldsymbol{U}^{\top}$ is optimal among all Σ_w satisfying (A3-4).

- Matches the *maximum a posteriori* estimate.
- Requires knowledge of Σ_{θ} (not practical).

Question: is there a reasonable Σ_w based on Σ_x , which can be estimated from *unlabeled data*?

Coro. $\Sigma_w^{-1} = f(\Sigma_x)$ is optimal among all Σ_w only depending on Σ_x , where $f(v_x) = \mathbb{E}[v_\theta|v_x]$ applies to the eigenvalues.

- **Heuristic**: approximate *f* with polynomial function and cross-validate the parameters.
- When $\mathbb{E}[v_{\theta}|v_{x}] = \mathbb{E}[v_{\theta}]$, $\Sigma_{w} = I_{d}$ is reasonable.

Illustration of optimal Σ_w .

Proposed heuristic.

Discussion and Conclusion

By analyzing generalized ridge regression under general setup,

- We determine the sign of the optimal ridge regularization.
 - Negative ridge can be beneficial under aligned ("easy") problem.
- ullet We characterize the optimal **explicit regularization** Σ_w .

Future Directions:

- Estimate Σ_w based on training samples.
- Extend result to more complicated models,
 e.g. random features model and neural net.

Remark: benefit of negative regularization is also empirically observed in RF model (red).

two-layer neural network.

Question: what about **implicit regularization**, i.e. $\lambda \to 0$?

When Does Preconditioning Help or Hurt Generalization?

Shun-ichi Amari, Jimmy Ba, Roger Grosse, Xuechen Li, Atsushi Nitanda, Taiji Suzuki, <u>Denny Wu</u>, Ji Xu.

(ICLR 2021)

- Precise error analysis of preconditioned least squares regression (ridgeless) in the overparameterized regime.
- Empirical validation of theoretical findings in neural networks.

Preconditioned Gradient Descent

Update rule:
$$\theta_{t+1} = \theta_t - \eta P(t) \nabla_{\theta_t} L(f_{\theta_t}), \quad t = 0, 1, \dots$$

Common choices of preconditioner **P** and corresponding algorithm:

- Inverse Fisher information matrix ⇒ natural gradient descent (NGD).
- Certain diagonal matrix ⇒ adaptive gradient methods (e.g. Adagrad, Adam).

<u>Geometric Intuition:</u> alleviate the effect of pathological curvature (using 2nd order information) and speed up **optimization**.

Figure from Xanadu blog post.

Question: how does preconditioning affect generalization?

Motivation: Implicit Bias of Optimizers

In the *online learning* setup, efficient optimization \approx good generalization. **This work:** learning a *fixed* dataset, possibly achieving zero training loss.

Implicit Bias in Interpolants

- Modern machine learning models (e.g. neural nets) are often overparameterized.
- Overparameterized models may interpolate training data in different ways.
- P affects the properties of the interpolant.

Motivation of This Work:

• In the *interpolation setting* (i.e. absence of explicit regularization), how does preconditioning influence the generalization performance?

Implicit Bias in Overparameterized Linear Regression

Motivating Example: preconditioned gradient descent (PGD) on the overparameterized least squares objective: $L(\theta) = \frac{1}{n} ||\mathbf{y} - \mathbf{X}\theta||_2^2$.

Stationary Solution ($t \to \infty$):

- Gradient descent: min ℓ_2 -norm solution.
- Preconditioned GD: for time-independent and full-rank P, min $\|\theta\|_{P^{-1}}$ norm solution.

Common Argument: min ℓ_2 -norm solution generalizes well \Rightarrow GD ($P = I_d$) is better (e.g. [Wilson et al. 2017]).

Question: Why is the ℓ_2 norm the right measure for generalization?

Motivation of This Work:

• In simplified settings, can we determine the *optimal preconditioner* that leads to the lowest generalization error?

Preconditioned Linear Regression: Problem Setup

- Data Model: $\mathbb{E}[\mathbf{x}\mathbf{x}^{\top}] = \Sigma_{\mathbf{x}}$; $\mathbf{X} \in \mathbb{R}^{n \times d}$, $n, d \to \infty$ and $d/n \to \gamma > 1$.
- Gradient Update: $d\theta(t) = \frac{1}{n} P(t) X^{\top} (y X \theta(t)) dt$, $\theta(0) = 0$.

Consider <u>natural gradient descent</u> (NGD) as an example. Given data distribution and model $p(X, y|\theta) = p(X)p(y|f_{\theta}(X))$,

$$\mathbf{F} = \mathbb{E}[\nabla_{\boldsymbol{\theta}} \log p(\mathbf{X}, y | \boldsymbol{\theta}) \nabla_{\boldsymbol{\theta}} \log p(\mathbf{X}, y | \boldsymbol{\theta})^{\top}] = -\mathbb{E}[\nabla_{\boldsymbol{\theta}}^{2} \log p(\mathbf{X}, y | \boldsymbol{\theta})].$$

The NGD update direction is then given by $\mathbf{F}^{-1}\nabla_{\theta}L(\mathbf{X}, f_{\theta})$.

Remark: for squared loss, the Fisher reduces to $\mathbb{E}[J_f^{\top} J_f]$ [Martens 2014].

For least squares regression, many preconditioners are time-invariant:

- Sample Fisher (Hessian) \Leftrightarrow sample covariance X^TX/n .
- Population Fisher \Leftrightarrow population covariance Σ_x .

We thus limit our analysis to fixed preconditioners P(t) =: P.

Stationary Solution of Preconditioned Regression

For positive definite P, the gradient flow trajectory is described by

$$\theta_P(t) = PX^{\top} \Big[I_n - \exp\Big(-\frac{t}{n}XPX^{\top}\Big) \Big] (XPX^{\top})^{-1}y,$$

and the stationary solution $\hat{\theta}_P$ is the min $\|\theta\|_{P^{-1}}$ norm interpolant:

$$\hat{\theta}_P := \lim_{t \to \infty} \theta_P(t) = P \textbf{\textit{X}}^\top (\textbf{\textit{XPX}}^\top)^{-1} \textbf{\textit{y}} = \arg \min_{\textbf{\textit{X}} \theta = \textbf{\textit{y}}} \lVert \theta \rVert_{\textbf{\textit{P}}^{-1}}.$$

Noticeable examples of preconditioned update:

- Identity: $P = I_d$ gives the min ℓ_2 norm interpolant (also true for momentum GD and SGD).
- Population Fisher: $P = F^{-1} = \Sigma_{\nu}^{-1}$.
- Sample Fisher: $P = (X^T X + \lambda I_d)^{-1}$ or $(X^T X)^{\dagger}$ results in the min ℓ_2 norm solution (same as GD).

Remark: population Fisher can be estimated from extra unlabeled data.

For parametric approximations see talk this afternoon!

Implicit Bias of Natural Gradient Descent

Starting from zero initialization:

- GD solution $\hat{\theta}_I$ has small parameter norm $\|\theta\|_2$.
- NGD solution $\hat{\theta}_{F^{-1}}$ has small function norm $\mathbb{E}_{p(x)}[f(x)^2] = \|\theta\|_{\Sigma_x}^2$.
- Sample Fisher-based updates behaves similar to GD.

Similar findings also empirically observed in simple neural networks:

Question: How does this difference translate to the generalization performance?

Bias-variance Decomposition

- Student-teacher setup: labels are generated by a teacher model (target function) with additive noise: $y_i = f_*(\mathbf{x}_i) + \varepsilon_i$.
- <u>Goal:</u> determine the optimal preconditioner *P* under different conditions of label noise and teacher model.

$$\text{Key observation: } \lim_{\lambda \to 0} \big(\boldsymbol{X}^{\top} \boldsymbol{X} + \lambda \boldsymbol{P}^{-1} \big)^{\dagger} \boldsymbol{X}^{\top} \boldsymbol{y} = \boldsymbol{P} \boldsymbol{X}^{\top} (\boldsymbol{X} \boldsymbol{P} \boldsymbol{X}^{\top})^{-1} \boldsymbol{y}.$$

 \Rightarrow It suffices to analyze the **ridgeless limit** of generalized ridge regression.

Bias-variance Decomposition:

$$R(\theta) = \underbrace{\mathbb{E}_{P_X}[(f^*(\mathbf{x}) - \mathbf{x}^{\top} \mathbb{E}_{P_{\varepsilon}}[\theta])^2]}_{B(\theta), \text{ bias}} + \underbrace{\operatorname{tr}(\operatorname{Cov}(\theta)\Sigma_{\mathsf{x}})}_{V(\theta), \text{ variance}}.$$

- Variance term is due to the label noise (independent to the teacher).
- Bias term only depends on the teacher model and data distribution.

Variance Term: NGD is Optimal

Thm. Given (A1-2), the variance is minimized by NGD: ${\bf P}={\bf F}^{-1}=\Sigma_{\rm x}^{-1}.$

Message: when labels are noisy (risk is dominated by variance), NGD is beneficial.

Remark: Note that population Fisher is required.

Two-layer MLP: student-teacher setup (distillation)

- Left: NGD (population Fisher) achieves lower risk under large label noise.
- Right: sample Fisher (i.e. less unlabeled data used) behaves like GD.

$Misspecification \approx Label\ Noise$

Misspecified Model: $f_*(x) = x^{\top} \theta_* + f_*^c(x)$; the residual f_x^c cannot be learned by the student.

Intuition: f_*^c is "similar" to additive label noise.

Message: NGD is beneficial under misspecification.

Misspecification in Neural Networks

- Student: two-layer MLP; Teacher: ResNet-20 at varying training epochs.
- Heuristic measure of misspecification: $\sqrt{y^\top K^{-1}y/n}$, where K is the *neural* tangent kernel (NTK) matrix of the student.

Misspecification on CIFAR-10.

Measure of misspecification.

Bias Term: the Well-specified Case

Well-specified Model: $f_*(x) = x^\top \theta_*$. General prior: $\mathbb{E}[\theta_* \theta_*^\top] = \Sigma_{\theta}$.

Thm. Under (A1,3,4), the bias is minimized by $\mathbf{P} = \mathbf{U} \operatorname{diag}(\mathbf{U}^{\top} \Sigma_{\theta} \mathbf{U}) \mathbf{U}^{\top}$.

No-free-lunch: the optimal **P** is usually not known a priori.

- GD generalizes better when target is isotropic $\Sigma_{\theta} = I_d$.
- NGD is optimal under misalignment $\Sigma_{\theta} = \Sigma_{x}^{-1}$.

Example (source condition). When $\underline{\Sigma}_{\theta} = \underline{\Sigma}_{x}^{r}$, there exists a transition point $r^* \in (-1,0)$ s.t. $\overline{\text{GD}}$ achieves lower (higher) bias than NGD when $r > (<) r^*$.

Two-layer MLP (MNIST).

Bias-variance Tradeoff: Interpolating between P

The optimal **P** for the *bias* and *variance* are in general **different**.

Question: how can we trade in one of bias/variance for the other?

Example: Consider $\Sigma_{\theta} = I_d$, $\Sigma_{x} \neq I_d$, and the following interpolation schemes:

- Additive: $P_{\alpha} = (\alpha \Sigma_x + (1 \alpha)I_d)^{-1}$, corresponds to the damped inverse.
- **Geometric:** $P_{\alpha} = \Sigma_{x}^{-\alpha}$, covers the "conservative" *square-root scaling*.

Proposition (informal). The stationary bias/variance is *monotonically* increasing/decreasing w.r.t. α in a certain range between 0 and 1.

⇒ At certain SNR, **interpolating** between GD and NGD is beneficial.

Geometric interpolation (MLP).

Bias-variance Tradeoff: Early Stopping

We have thus far only looked at the stationary solution $(t \to \infty)$.

Question: what about algorithmic regularization such as early stopping?

Proposition (informal). Define $B^{\mathrm{opt}}(\theta) = \inf_{t \geq 0} B(\theta(t))$. Under (A1-4),

- 1. the variance $V(\theta_P(t))$ monotonically increases through time.
- 2. when $\Sigma_{\theta} = \Sigma_{x}^{-1}$ (misaligned), $B^{\text{opt}}(\theta_{P}) \geq B^{\text{opt}}(\theta_{F^{-1}})$.
- 3. when $\Sigma_{\theta} = I_d$ (isotropic), $B^{\text{opt}}(\theta_I) \leq B^{\text{opt}}(\theta_{F^{-1}})$.
- (1) suggests that early stopping is beneficial when data is noisy (due to reduction of variance).
- (2-3) suggests that early stopping may not alter the comparison of the well-specified bias (between GD and NGD).

Question: What about the **early stopping time**, i.e. number of steps (efficiency) needed to achieve the *optimal population risk*?

RKHS Regression: Fast Decay of Population Risk

<u>Aim to show:</u> preconditioning \Rightarrow efficient reduction of *population risk*.

- Model: $y_i = f^*(\mathbf{x}_i) + \varepsilon_i$. $S : \mathcal{H} \to L_2(P_X)$. $\Sigma = S^*S$; $L = SS^*$.
- Optimization: $f_t = f_{t-1} \eta(\Sigma + \alpha I)^{-1}(\hat{\Sigma}f_{t-1} \hat{S}^*Y)$, $f_0 = 0$. $f_t \in \mathcal{H}$.

Remark: the population Fisher corresponds to the *covariance operator* Σ . The update is thus an **additive interpolation** between GD and NGD.

Assumptions:

- Source Condition: $\exists r \in (0, \infty)$ s.t. $f^* = L^r h^*$ for some $h^* \in L_2(P_X)$.
- Capacity Condition: $\exists s>1$ s.t. $\operatorname{tr}\Bigl(\Sigma^{1/s}\Bigr)<\infty$ and $2r+s^{-1}>1$.
- Regularity of RKHS: $\exists \mu \in [s^{-1},1], C_{\mu} > 0 \text{ s.t. } \sup_{\mathbf{x}} \|\Sigma^{1/2-1/\mu} K_{\mathbf{x}}\|_{\mathcal{H}} \leq C_{\mu}.$

Remark: source condition relates to the previously discussed <u>alignment</u>: Large $r \Rightarrow$ smoother teacher model, i.e. "easier" problem; vice versa.

Fast Decay of Population Risk (continued)

Theorem (informal). Given $\mu \leq 2r$ or $r \geq 1/2$, for sufficiently large n, preconditioned update with $\alpha = n^{-\frac{2s}{2s+1}}$ achieves the minimax optimal convergence rate $R(f_t) = \|Sf_t - f^*\|_{L_2(P_X)}^2 = \tilde{O}\left(n^{-\frac{2rs}{2rs+1}}\right)$ in $t = \Theta(\log n)$ steps, whereas ordinary gradient descent requires $t = \Theta\left(n^{\frac{2rs}{2rs+1}}\right)$ steps.

Remark: similar to the role of momentum [Pagliana and Rosasco 2019].

- The optimal interpolation coefficient α and stopping time t are chosen to balance the bias and variance.
- α increases with r NGD is advantageous for "hard" problems.

Discussion and Conclusion

Overparameterized Least Squares Regression:

- Identified factors that impact the generalization of ridgeless interpolant.
 - NGD is advantageous under noisy labels or misaligned ("hard") problem.
- Discussed how bias-variance tradeoff can be realized.

RKHS Regression: preconditioned update achieves minimax optimal rate in much fewer steps (i.e. faster decay in population risk).

Neural Networks: empirical trends matching our theoretical analysis.

Future Directions:

- Understand time-varying preconditioners (e.g. adaptive methods)
- Characterize additional factors (step size, explicit regularization, etc.)

Caution: properties of linear or kernel model *may not* translate to neural network...

See talks this afternoon!

Additional Reference

- Krogh and Hertz 1992. A simple weight decay can improve generalization.
- Amari 1998. Natural gradient works efficiently in learning.
- Rubio and Mestre 2011. Spectral convergence for a general class of random matrices.
- Martens 2014. New insights and perspectives on the natural gradient method.
- Wilson et al. 2017. The marginal value of adaptive gradient methods in machine learning.
- Dobriban and Wager 2018. High-dimensional asymptotics of prediction: Ridge regression and classification.
- Jacot et al. 2018. Neural tangent kernel: Convergence and generalization in neural networks.
- Chizat and Bach 2018. On Lazy Training in Differentiable Programming.
- Arora et al. 2019. Fine-grained analysis of optimization and generalization for overparameterized two-layer neural networks.
- Xu and Hsu 2019. On the number of variables to use in principal component regression.
- Mei and Montanari 2019. The generalization error of random features regression: Precise asymptotics and double descent curve.
- Yang, G. and Hu, E. J., 2020. Feature learning in infinite-width neural networks.