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5Invertible Neural Networks (INNs)

Invertible Neural Networks (INNs) generated by 𝒢

 is parametrized ("trainable") but designed to be invertible.𝒢

Understand theoretical props of invertible neural networks (INNs).

Goal

f = g1 ∘ W1 ∘ ⋯ ∘ gk ∘ Wk (gi ∈ 𝒢, Wi ∈ Aff)

}{

Example (Designs of flow layers )𝒢
• Coupling-based flow layers 

• Neural ordinary differential equations

 Compositions of flow maps/layers  and affine transforms .𝒢 Aff

(  is often rather simple → Composed to model complex )𝒢 f

[DKB14, PNRML19, KPB19]

[CRBD18]



6Example1: Coupling Flows

CF-INN = Coupling-flow based INN.

Idea: Keep some dimensions unchanged. (Strong constraint!)

Coupling flows (CFs) [DKB14, PNRML19, KPB19]

Affine-coupling flows (ACFs)

Ψs,t(x, y) := (x, es(x)y + t(x))

[DKB14,DSB17,KD18]

One of the simplest CFs using coordinate-wise affine transformation:

Ψs,t,k :



7Example 2: Neural Ordinary Differential Equations

z(0) = x, ·z(t) = f(z(t)) (t ∈ ℝ)

Then, for , consider the set of NODEs:ℋ ⊂ Lip(ℝd)
[CRBD18]NODE layers

NODEs(ℋ) := {x ↦ z(1) | f ∈ ℋ}

NODE layer Lip(ℝd) := {f : ℝd → ℝd | f  is Lipschitz}
For each , we define an invertible map  
via an initial value problem

f ∈ Lip(ℝd) x ↦ z(1)
[DJ76]

{z(0) = x,
·z(t) = f(z(t)) (t ∈ ℝ) .

x z(1)
Solve for :z(t)



8Applications of INNs

Usages of INNs

• Approximate distributions (normalizing flows).

μ
ν

(g1)*μ
(g2)*μ

(g3)*μ

[KD18]

[DSB17]

• Approximate invertible maps (feature extraction & manipulation).

Useful properties of INNs (for nicely designed )𝒢

✓Explicit and efficient invertibility. 

✓Tractability of Jacobian determinant (for nicely designed ).𝒢



9Application 1: Distribution Modeling

Normalizing Flows

• Generative modeling [DSB17,KD18,OLB+18,KLSKY19,ZMWN19] 

• Probabilistic inference [BM19,WSB19,LW17,AKRK19] 

• Semi-supervised learning [IKFW20]

Examples

Express  as a transformation  of a real vector  sampled from :x f u pu

  where  x = f(u) u ∼ pu

Training by Maximum Likelihood (Invertibility+Tractable Jacobian!)

By change of variables formula:

log px(x) = log pu( f −1(x)) + log detJf−1(x) ( : Jacobian of )Jf−1 f −1

↑ known ↑ tractable

↓ easily invertible

[KD18]

f

xu

detJf−1



10Application 2: Function Modeling

• Generative modeling [DSB17,KD18,OLB+18,KLSKY19,ZMWN19] 

• Semi-supervised learning [IKFW20] 

• Transfer learning [TSS20]

Feature Extraction & Manipulation

Examples

1. Extract latent representation  from  by . 
2. Modify  in the latent space (e.g., interpolation). 
3. Map back to the data space by .

u x f
u

f −1

[DSB17]
u x

f

f −1



11How flexible are INNs?

Can these INNs have sufficient representation power?
Research question

(Restricted function form → restricted representation power?)

INN  is used for distribution modeling (application 1) 
and invertible function modeling (application 2).

f

BUT...

 relies on special designs to maintain good properties. 
(e.g., CF layers keep some dimensions unchanged)
𝒢

Complications

• The layers have clever specific designs (e.g., ACFs). 
• Function composition is the only way to build complex models. 

(Operations such as addition or multiplications are not allowed.)



12This talk is based on the following papers

• Proposed a general theoretical framework to analyze 
the representation power (universalities) of invertible models. 

• Analyzed CF-INNs (ACFs and more advanced ones).

[TTI+20]
Paper 2: Universal Approximation Property of Neural Ordinary 
Differential Equations (NeurIPS 2020 DiffGeo4DL Workshop)

[TIT+20]
Paper 1: Coupling-based invertible neural networks are universal 
diffeomorphism approximators (NeurIPS 2020)

• Analyzed NODEs, building on the general framework. 

• (with minor modification to the general framework)

Oral paper!



What is "representation power"?

{C2-diffeo}

- ( -) universal approximator: 
the model can approximate any target function 
w.r.t. - ( -) norm on a compact set.

sup Lp

sup Lp

Definition (informal)

"Representation power" = Universal approximation property.

C2-diffeo

f

g

K

< ε

ℝd
C2

C2

[C89,HSW89]

13
Here,

μ
ν

(g1)*μ
(g2)*μ

(g3)*μ

Definition (informal)

A model is a distributional universal approximator if it can 
transform one distribution arbitrarily close to any distribution.

   

 (weak convergence).

(gn)*μ ⟶
n→∞

ν



14Target Class and General Framework

General
𝒟2

...and more
{C2-diffeo on ℝd} := -diffeo of the form  

                (  : open -diffeo to )
𝒟2 {C2 f : Uf → f(Uf )}

Uf ⊂ ℝd C2 ℝd

Definition (Approximation target )𝒟2

Fairly large set of smooth invertible maps.

Paper 1 Result (Theoretical Framework)

sup Lp

-/ -univ. 
for 
Lp sup

𝒟2
-/ -univ. 

for 
Lp sup

Ξ
-/ -univ. 

for 
Lp sup

𝒮∞
c

Distributional- 
univ.⇔ ⇔ ⇒

(under mild regularity conditions)

Ξ : "flow endpoints"

Application of a structure theorem 
 in differential geometry

𝒮∞
c

General
𝒟2

Ξ
Specific
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-/ -univ. 
for 
Lp sup

𝒟2
-/ -univ. 

for 
Lp sup

Ξ
-/ -univ. 

for 
Lp sup

𝒮∞
c

Distributional- 
univ.⇔ ⇔ ⇒

Preview of Results

Paper 1 Result (Examples of Universal Coupling Flows)

Affine Coupling Flows yield -univ. INNs for  
(and hence for , and also Dist-univ.).

Lp 𝒮∞
c

𝒟2

𝒮∞
c

Specific

General
𝒟2

• Sum-of-squares polynomial flow (SoS-flow) 

• Deep sigmoidal flow (DSF; aka. NAF) 

yield -univ. INNs for  (and hence for , and also Dist-univ.). 

(stronger than in                       ).

sup 𝒮∞
c 𝒟2

[JSY19]

[JSY19, HKLC18]

[HKLC18]

Paper 1 Result (Affine Coupling Flows yield universal INNs)
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-/ -univ. 
for 
Lp sup

𝒟2
-/ -univ. 

for 
Lp sup

Ξ
-/ -univ. 

for 
Lp sup

𝒮∞
c

Distributional- 
univ.⇔ ⇔ ⇒

Preview of Results

Paper 2 Result (Analysis of NODEs)

NODEs yield -univ. INNs for  
(and hence -univ. for . Also Dist-univ.).

sup Ξ
sup 𝒟2



17Overview and Recap

What did we do?

Why important?

Theoretically investigated: 
Are our INNs expressive enough?

Models without a representation 
power guarantee are hard to rely on.

What is the result? "Coupling-based INNs (CF-INNs)" and 
"NODE-based INNs (NODE-INNs)" are 
"universal function approximators" 
despite their special architectures.

CF-INNs and NODE-INNs can be relied on in modeling 
invertible functions and probability distributions.

Message

INNs = Invertible neural networks
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20Contents of Part 2

sup Lp

1. Idea of proof 

2. Notion of universalities 

3. Machinery for proof 

i)  Compatibility of approximation and composition 

ii) Structure theorem of diffeomorphism group 

4. Proof outline of universality of NODE 

5. Proof of results in paper 1



21Idea of Proof
Difficulty

sup Lp

• We cannot use techniques of functional analysis! 

- INNs and  are not linear spaces 
Recall :  := -diffeo of the form   

              (  : open -diffeo to ) 

- Existing methods do not work….(e.g. Hahn-Banach 
theorem, Fourier transform, Stone-Weirestrass theorem, 
e.t.c)

𝒟2

𝒟2 {C2 f : Uf → f(Uf )}
Uf ⊂ ℝd C2 ℝd

Idea

• Utilize a concrete structure of the diffeomorphism group !



-Universal approximatorsLp

: model, set of measurable bijection from  to   (e.g. INNs) 

: target functions    (e.g. ) 

 is an -universal approximator for  if  

, ,  : compact ,   

 

ℳ ℝd ℝd

ℱ f : Uf → f(Uf ) 𝒟2

ℳ Lp ℱ

∀f ∈ ℱ ∀ε > 0 ∀K ⊂ Uf ∃g ∈ ℳ

∫K
| f(x) − g(x) |p dx < ε

22

f
g

< ε

K



-Universal approximatorssup
: model, set of measurable bijection from  to   (e.g. INNs) 

: target functions    (e.g. ) 

 is an -universal approximator for  if  

, ,  : compact ,   

 

ℳ ℝd ℝd

ℱ f : Uf → f(Uf ) 𝒟2

ℳ sup ℱ

∀f ∈ ℱ ∀ε > 0 ∀K ⊂ Uf ∃g ∈ ℳ

sup
x∈K

| f(x) − g(x) | < ε

23

f

g

< ε

K



Relation of universalities 24

Proposition

A model  is a -universal approximator for a target  

A model   is an -universal approximator a target 

ℳ sup ℱ

ℳ Lp ℱ

⟹



Compatibility of approximations and  compositions

• Is a composition of approximations an approximation of the 
composition ?  

• We may reduce the problem to approximations of small constituents

25

Proposition

: a set of piecewise -diffeomorphisms  

 : linearly increasing piecewise -diffeomorphims 

Assume    such that 

   ( -approximation on any compact sets) 

Then, for compact set , there exist  such that  

 ( -approximation on )

ℳ C1

F1, …, Fr C1

∃Hi ∈ ℳ

Hi ≈ Fi Lp

K ⊂ ℝd G1, …, Gr ∈ ℳ

Gr ∘ ⋯ ∘ G1 ≈ Fr ∘ ⋯ ∘ F1 Lp K

Remark
If  is composed of locally bounded maps and ’s are continuous, 

we have a similar proposition for -universal approximators.

ℳ Fi

sup
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Theorem (Herman, Thurston, Epstein, and Mather)

 is a simple group (does not have any proper normal 

subgroup except )

Diff2
c

{Id}

Definition (compactly supported diffeomorphisms)

: the set of -diffeomorphisms  such that  
 outside a compact subset ( ).

Diff2
c C2 f : ℝd → ℝd

f(x) = x Uf = ℝd

𝒟2

Diff2
c

A structure theorem of diffeomorphism groups



ii

Extension of  𝒟2 27

Proposition

For  (  ) and compact subset ,  there 

exist an affine transform  and  such that 

.

f ∈ 𝒟2 f : Uf → ℝd K ⊂ Uf

W ∈ Aff g ∈ Diff2
c

f |K = W ∘ g |K

f

Uf

K

 ( )g W = 1



Flow endpoints 28

Corollary
For ,  there exist finite flow endpoints  such that 

.

g ∈ Diff2
c g1, …, gm ∈ Ξ

g = g1 ∘ ⋯ ∘ gm

Definition (flow endpoints )Ξ
: flow endpoint if there exists a continuous and 

"additive" map  such that  and  
g ∈ Diff2

c
ϕ : [0,1] → Diff2

c ϕ(0) = Id ϕ(1) = g
Ξ := {flow endpoints}
Proposition

The set of finite compositions of flow endpoints (the group 
generated by ) is a nontrivial normal subgroup of .Ξ Diff2

c

-/ -univ. 
for 
Lp sup

𝒟2
-/ -univ. 

for 
Lp sup

Ξ⟺
In particular,

石川勲のiPad

石川勲のiPad

石川勲のiPad

石川勲のiPad

石川勲のiPad

石川勲のiPad



Paper 2: Universality of NODE

  (flow endpoints)∃h1 ∘ h2 ∘ ⋯

  (  & compactly supported -diffeomorphism)∃W ∘ h Aff C2

:  target,   :  compactf ∈ 𝒟2 K ⊂ Uf

f |K

structure theorem of diffeomorphism group

29

element of NODEs(ℋ)

≈

Extend f |K

NODEs(ℋ) := {x ↦ z(1) | f ∈ ℋ}

Paper 2 Result (Analysis of NODEs)

NODEs yield -univ. INNs for  
(and hence -univ. for . Also Dist-univ.).

sup Ξ
sup 𝒟2



Proof outline of result in Paper 1

  (flow endpoints )∃h1 ∘ h2 ∘ ⋯ Ξ

  (nearly s)∃g1 ∘ g2 ∘ ⋯ Id

   (permutations & )σ1 ∘ τ1 ∘ ⋯ 𝒮∞
c

  (  & compactly supported -diffeomorphism)∃W ∘ h Aff C2

:  target,   :  compactf ∈ 𝒟2 K ⊂ Uff |K

structure theorem of diffeomorphism group

Decompose    into 
simpler mappings

f |K

30

-/ -univ. 
for 
Lp sup

𝒟2
-/ -univ. 

for 
Lp sup

𝒮∞
c

⟺
𝒮∞

c := {τ : compactly supported τ(x, y) = (x, u(x, y))} ⊂ Diff2
c

Extend f |K

u : ℝd−1 → ℝ, (x, y) ∈ ℝd−1 × ℝ



Nearly Id 31

Definition (nearly-  elements)Id

Proposition

For a flow endpoint ,  there exist nearly-  elements 
 such that 

.

g ∈ Diff2
c Id

g1, …, gm ∈ Diff2
c

g = g1 ∘ ⋯ ∘ gm

: nearly-  element if  for g ∈ Diff2
c Id ∥dg(x) − I∥ < 1 x ∈ ℝd

     (  : "additive" and continuous) 

Then,  and  as  

Thus, we define  for sufficiently large                 

∵ g = ϕ(1) ϕ : [0,1] → Diff2
c

g = ϕ(1/m)m ϕ(1/m) → Id m → ∞

g1 = g2 = … = gm = ϕ(1/m) m ∎



Decomposition of nearly ’sId 32

Proposition

For a nearly-  element ,  there exist  
and  such that 

.

Id g ∈ Diff2
c τ1, …, τd ∈ 𝒮2

c
σ1, …, σd ∈ 𝔖d

g = σ1 ∘ τ1 ∘ ⋯ ∘ σm ∘ τm

Lemma for this proposition

For , if for any , the submatrix of its 
jacobian 

  

is invertible for all , then there exit  and 
 such that 

.

g = (gi)d
i=1 ∈ Diff2

c k = 1,…, d

(
∂gi+k−1

∂xj+k−1
(x))

i,j=1,…,d−k−1

x τ1, …, τd ∈ 𝒮2
c

σ1, …, σd ∈ 𝔖d
g = σ1 ∘ τ1 ∘ ⋯ ∘ σm ∘ τm

石川勲のiPad

石川勲のiPad

石川勲のiPad

石川勲のiPad

石川勲のiPad

石川勲のiPad

石川勲

石川勲のiPad

石川勲のiPad



Proof outline of result in Paper 1

  (flow endpoints )∃h1 ∘ h2 ∘ ⋯ Ξ

  (nearly s)∃g1 ∘ g2 ∘ ⋯ Id

   (permutations & )σ1 ∘ τ1 ∘ ⋯ 𝒮∞
c

  (  & compactly supported -diffeomorphism)∃W ∘ h Aff C2

:  target,   :  compactf ∈ 𝒟2 K ⊂ Uff |K

structure theorem of diffeomorphism group

Decompose    into 
simpler mappings

f |K

33

-/ -univ. 
for 
Lp sup

𝒟2
-/ -univ. 

for 
Lp sup

𝒮∞
c

⟺
𝒮∞

c := {τ : compactly supported τ(x, y) = (x, u(x, y))} ⊂ Diff2
c

Extend f |K

u : ℝd−1 → ℝ, (x, y) ∈ ℝd−1 × ℝ



𝒮∞
c

Specific

General
𝒟2

-univ. for sup 𝒮∞
c -univ. for sup 𝒟2

-univ. for Lp 𝒮∞
c -univ. for Lp 𝒟2

⟹
⟹

⟹

⟹

You getYou show

How the result can be used 34



Upgrade Existing Guarantees 35

Regrading guarantees for existing INN architectures: 

• Sum-of-squares polynomial flow (SoS-flow) 

• Deep sigmoidal flow (DSF; aka. NAF)

Previously known/claimed [JSY19, HKLC18]: 
-universality for sup 𝒮∞

c

-universality for sup 𝒟2

𝒮∞
c

Specific

General
𝒟2

⇒



Distributional universal approximators

Definition (distributional universal approximator)

: model, set of measurable bijection from  to   (e.g. INNs) 

:  absolutely continuous probability measures 

 is a distributional universal approximator if  

,   

   (weak convergence).

ℳ ℝd ℝd

𝒫

ℳ

∀μ, ν ∈ 𝒫 ∃{gn}∞
n=1 ⊂ ℳ

(gn)*μ ⟶
n→∞

ν

36

μ
ν

(g1)*μ
(g2)*μ

(g3)*μ



Relation of universalities 37

Proposition

A model  is a -universal approximator for a target  

A model   is a distributional universal approximator

ℳ Lp 𝒟2

ℳ

⟹

-/ -univ. 
for 
Lp sup

𝒟2
-/ -univ. 

for 
Lp sup

Ξ
-/ -univ. 

for 
Lp sup

𝒮∞
c

Distributional- 
univ.⇔ ⇔ ⇒

In summary, we obtain



Universality of CF-INNs 38

Theorem

Assume  arbitrarily approximates any element in  , 

and is composed of piecewise -functions (e.g. MLPs with 

ReLU activation, RKHS with Gaussian kernel, e.t.c).  

Then,  is an -universal approximator for 

ℋ C∞
c (ℝd−1)

C1

INNℋ-ACF Lp 𝒮∞
c

: functions on  (e,g, MLPs) 

 is an INN with the flow layers composed of  

   

, 

ℋ ℝd−1

INNℋ-ACF

Ψd−1,s,t(x, y) := (x, es(x)y + t(x))
(x, y) ∈ ℝd−1 × ℝ s, t ∈ ℋ

One of the simplest CF-INN



Universality of CF-INNs
• We may assume K = [0,1]2

39

f

ψn ∼ g3 ψ−1
n ∼ g1

hn = (x, vn(y)) ∼ g2

   

  

∃g0, …, g3 ∈ ℋ-ACF

f ∼ ψ ∘ ψ−1
n ∘ hn ∘ ψn

∼ g0 ∘ g1 ∘ g2 ∘ g3

ψ ∼ g0

vn(y) = {u(k /n, y) + k y ∈ [k, k + 1),
y otherwise .

∈

ℋ-ACF

tn :=
n−1

∑
k=0

k1[k/n,(k+1)/n)ψn := Ψd−1,1,tn

(x, u(x, y))

=

For detail, look at our paper !



Universality of CF-INNs 40

Affine Coupling Flows yield -univ. INNs for  
(and hence for , and also Dist-univ.).

Lp 𝒮∞
c

𝒟2

Paper 1 Result (Affine Coupling Flows yield universal INNs)

-/ -univ. 
for 
Lp sup

𝒟2
-/ -univ. 

for 
Lp sup

Ξ
-/ -univ. 

for 
Lp sup

𝒮∞
c

Distributional- 
univ.⇔ ⇔ ⇒

Remark

The representation power of invertible neural networks based 
on affine coupling flow is empirically known, and they were 
conjectured distributional universal approximator.  We 
affirmatively answer this question.



• Proposed a general theoretical 
framework to analyze the 
representation power 
(universalities) of invertible 
models. 

• Guarantee the representation 
power of  CF-INNs as an 
-universal approximator. 

• Guarantee the representation 
power of NODE-INNs as a 
-universal approximator.

Lp

sup

Conclusion

• Quantitative analysis:  
Estimate the number of layers 
required for the approximation 
given the smoothness of the 
target. 

Our papers are available at 

[1] https://papers.nips.cc/paper/2020/hash/
2 2 9 0 a 7 3 8 5 e d 7 7 c c 5 5 9 2 d c 2 1 5 3 2 2 9 f 0 8 2 -
Abstract.html 

[2] http://arxiv.org/abs/2012.02414

Future work

41

CF-INNs and NODE-INNs can be relied on in modeling 
invertible functions and probability distributions.

Message

Conclusion & Future Work 

https://papers.nips.cc/paper/2020/hash/2290a7385ed77cc5592dc2153229f082-Abstract.html
https://papers.nips.cc/paper/2020/hash/2290a7385ed77cc5592dc2153229f082-Abstract.html
https://papers.nips.cc/paper/2020/hash/2290a7385ed77cc5592dc2153229f082-Abstract.html
http://arxiv.org/abs/2012.02414
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