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Supervised learning with neural networks

Prediction/classification task

• Couple of random variables (X ,Y ) on Rd × R

• Given n i.i.d. samples (xi , yi )
n
i=1, build h s.t. h(X ) ≈ Y

Wide 2-layer ReLU neural network

For a width m� 1, predictor h given by

h((wj)j , x) :=
1

m

m∑
j=1

φ(wj , x)

where

{
φ(w , x) := b (a>[x ; 1])+

w := (a, b) ∈ Rd+1 × R
.

x [1]

x [2]

1

h(x)

Hidden layerInput Output

(bj)j(aj)j

 φ is 2-homogeneous in w , i.e. φ(rw , x) = r2φ(w , x),∀r > 0
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Gradient flow of the empirical risk

Convex smooth loss `:

`(p, y) = log(1 + exp(−yp)) (logistic)

`(p, y) = (y − p)2 (square)

Empirical risk with weight decay (λ ≥ 0)

Fm((wj)j) :=
1

n

n∑
i=1

`(h((wj)j , xi ), yi )︸ ︷︷ ︸
empirical risk

+
λ

m

m∑
j=1

‖wj‖2
2︸ ︷︷ ︸

(optional) regularization

Gradient flow

• Initialize w1(0), . . . ,wm(0)
i.i.d∼ µ0 ∈ P2(Rd+1 × R)

• Decrease the non-convex objective via gradient flow, for t ≥ 0,

d

dt
(wj(t))j = −m∇Fm((wj(t))j)

 in practice, discretized with variants of gradient descent
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Illustration

Space of parameters
• plot |bj | · aj
• color depends on sign of bj
• tanh radial scale

Space of predictors
• (+/−) training set

• color shows h((wj(t))j , ·)
• line shows 0 level set

Main question

What is performance of the learnt predictor h((wj(∞))j , ·) ?
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Motivations

• Understanding 2-layer neural networks

 natural next theoretical step after linear models

 role of initialization µ0, loss, regularization, data structure, etc.

• Understanding representation learning via gradient descent

 not captured by current theories for deeper models who study

perturbative regimes around the initialization

 we can’t understand the deep if we don’t understand the shallow
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Outline

Infinite width limit: global convergence

Regularized case: function spaces

Unregularized case: implicit regularization



Infinite width limit: global

convergence
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Dynamics in the infinite width limit

• Parameterize with a probability measure µ ∈ P2(Rd+2)

h(µ, x) =

∫
φ(w , x)dµ(w)

• Objective on the space of probability measures

F (µ) :=
1

n

n∑
i=1

`(h(µ, xi ), yi ) + λ

∫
‖w‖2

2 dµ(w)

Theorem (dynamical infinite width limit, adapted to ReLU)

Assume that

spt(µ0) ⊂ {(a, b) ∈ Rd+1 × R ; ‖a‖2 = |b|}.

As m→∞, µt,m = 1
m

∑m
j=1 δwj (t) converges a.s. in P2(Rd+2) to

µt , the unique Wasserstein gradient flow of F starting from µ0.

Ambrosio, Gigli, Savaré (2008). Gradient flows: in metric spaces and in the space of probability measures.
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Global convergence

Theorem (C. & Bach, ’18, adapted to ReLU)

Assume that µ0 = USd ⊗ U{−1,1} and technical conditions. If µt

converges weakly to µ∞, then µ∞ is a global minimizer of F .

• Initialization matters: the key assumption on µ0 is diversity

• Corollary: limm,t→∞ F (µm,t) = minF

• Open question: convergence of µt ( Lojasiewicz inequality?)

Performance of the learnt predictor?

Depends on the objective F and the data! If F is the ...

• regularized empirical risk: “just” statistics (this talk)

• unregularized empirical risk: need implicit bias (this talk)

• population risk: need convergence speed (open question)

Chizat, Bach (2018). On the Global Convergence of Gradient Descent for Over-parameterized Models [...].
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Illustration of global convergence (population risk)

2 1 0 1 2 3

2

1

0

1

2

Stochastic gradient descent on expected square loss (m = 100, d = 1)

Teacher-student setting: X ∼ USd and Y = f ∗(X ) where f ∗ is a ReLU

neural network with 5 units (dashed lines).

[Related work studying infinite width limits]:

Nitanda, Suzuki (2017). Stochastic particle gradient descent for infinite ensembles.

Mei, Montanari, Nguyen (2018). A Mean Field View of the Landscape of Two-Layers Neural Networks.

Rotskoff, Vanden-Eijndem (2018). Parameters as Interacting Particles [...].

Sirignano, Spiliopoulos (2018). Mean Field Analysis of Neural Networks.

Wojtowytsch (2020). On the Convergence of Gradient Descent Training for Two-layer ReLU-networks [...]



Regularized case: function spaces
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Variation norm

Definition (Variation norm)

For a predictor h : Rd → R, its variation norm is

‖h‖F1 := min
µ∈P2(Rd+2)

{
1

2

∫
‖w‖2

2 dµ(w) ; h(x) =

∫
φ(w , x)dµ(w)

}
= min

ν∈M(Sd )

{
‖ν‖TV ; h(x) =

∫
(a>[x ; 1])+ dν(a)

}
Proposition

If µ∗ ∈ P2(Rd+2) minimizes F then h(µ∗, ·) minimizes

1

n

n∑
i=1

`(h(xi ), yi ) + 2λ‖h‖F1 .

Barron (1993). Universal approximation bounds for superpositions of a sigmoidal function.

Kurkova, Sanguineti (2001). Bounds on rates of variable-basis and neural-network approximation.

Neyshabur, Tomioka, Srebro (2015). Norm-Based Capacity Control in Neural Networks.
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Fixing the hidden layer and conjugate RKHS

What if we only train the output layer?

 Let S := {µ ∈ P2(Rd+2) with marginal USd on input weights}

Definition (Conjugate RKHS)

For a predictor h : Rd → R, its conjugate RKHS norm is

‖h‖2
F2

:= min

{∫
|b|22 dµ(a, b) ; h =

∫
φ(w , ·) dµ(w), µ ∈ S

}
Proposition (Kernel ridge regression)

All else unchanged, fixing the hidden layer leads to minimizing

1

n

n∑
i=1

`(h(xi ), yi ) + λ‖h‖2
F2
.



13/24

Illustration of the predictor

Predictor learnt via gradient descent (square loss & weight decay)

(a) Training both layers (F1-norm) (b) Training output layer (F2-norm)

F1 F2

Stat. prior Adaptivity to anisotropy Isotropic smoothness

Optim. No guarantee Guaranteed efficiency

Bach (2014). Breaking the curse of dimensionality with convex neural networks.



Unregularized case: implicit

regularization
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Preliminary: linear classification with exponential loss

Classification task

• Y ∈ {−1, 1} and prediction is sign(h(X ))

• no regularization (λ = 0)

• loss with an exponential tail

• exponential `(p, y) = exp(−py), or

• logistic `(p, y) = log(1 + exp(−py)) Loss for y = 1

Theorem (SHNGS 2018, reformulated)

Consider h(w , x) = wᵀx and a linearly separable training set. For

any w(0), the normalized gradient flow w̄(t) = w(t)/‖w(t)‖2

converges to a ‖ · ‖2-max-margin classifier, i.e. a solution to

max
‖w‖2≤1

min
i∈[n]

yi · wᵀxi .

Telgarsky (2013). Margins, shrinkage, and boosting.

Soudry, Hoffer, Nacson, Gunasekar, Srebro (2018). The Implicit Bias of Gradient Descent on Separable Data.
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Implicit regularization for linear classification: illustration

Implicit bias of gradient descent for classification (d = 2)
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Implicit regularizations for 2-layer neural networks

Back to wide 2-layer ReLU neural networks.

Theorem (C. & Bach, 2020)

Assume that µ0 = USd ⊗U{−1,1}, that the training set is consistant

( [xi = xj ]⇒ [yi = yj ]) and technical conditions (in particular, of

convergence). Then h(µt , ·)/‖h(µt , ·)‖F1 converges to the

F1-max-margin classifier, i.e. it solves

max
‖h‖F1

≤1
min
i∈[n]

yih(xi ).

• fixing the hidden layer leads to the F2-max-margin classifier

• well also prove convergence speed bounds in simpler settings

Chizat, Bach (2020). Implicit Bias of Gradient Descent for Wide Two-layer Neural Networks [...].
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Illustration

h(µt , ·) for the exponential loss, λ = 0 (d = 2)
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Numerical experiments

Setting

Two-class classification in dimension d = 15:

• two first coordinates as shown on the right

• all other coordinates uniformly at random

Coordinates 1 & 2
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(b) Margin vs. m (n = 256)
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Statistical efficiency

Assume that ‖X‖2 ≤ D a.s. and that, for some r ≤ d , it holds a.s.

∆(r) ≤ sup
π

{
inf

yi 6=yi′
‖π(xi )− π(xi ′)‖2 ; π is a rank r projection

}
.

Theorem (C. & Bach, 2020)

The F1-max-margin classifier h∗ admits the risk bound, with

probability 1− δ (over the random training set),

P(Y h∗(X ) < 0)︸ ︷︷ ︸
proportion of mistakes

.
1√
n

[( D

∆(r)

) r
2

+2
+
√

log(1/δ)
]
.

• this is a strong dimension independent non-asymptotic bound

• for learning in F2 the bound with r = d is true

• this task is asymptotically easy (the rate n−1/2 is suboptimal)

[Refs]:

Chizat, Bach (2020). Implicit Bias of Gradient Descent for Wide Two-layer Neural Networks [...].
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Two implicit regularizations in one dynamics (I)

Lazy training (informal)

All other things equal, if the variance at initialization is large and

the step-size is small then the model behaves like its first order

expansion over a significant time.

• Neurons hardly move but significant total change in h(µt , ·)
• Here, the linearization converges to a max-margin classifier in

the tangent RKHS (similar to F2)

• Eventually converges to F1-max-margin

Jacot, Gabriel, Hongler (2018). Neural Tangent Kernel: Convergence and Generalization in Neural Networks.

Chizat, Oyallon, Bach (2018). On Lazy Training in Differentiable Programming.

Woodworth et al. (2019). Kernel and deep regimes in overparametrized models.
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Two implicit regularizations in one dynamics (II)

Space of parameters Space of predictors

See also: Moroshko, Gunasekar, Woodworth, Lee, Srebro, Soudry (2020). Implicit Bias in Deep Linear

Classification: Initialization Scale vs Training Accuracy.
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Perspectives

• Open question: make statements of this talk quantitative

 how fast is the convergence ? how many neurons are needed?

• Mathematical models for deeper networks

 goal: formalize training dynamics & study generalization

[Talk based on the following papers:]

- Chizat, Bach (NeurIPS 2018). On the Global Convergence of Over-parameterized

Models using Optimal Transport.

- Chizat, Oyallon, Bach (NeurIPS 2019). On Lazy Training in Differentiable

Programming.

- Chizat, Bach (COLT 2020). Implicit Bias of Gradient Descent for Wide Two-layer

Neural Networks Trained with the Logistic Loss.
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