

Analysis of Gradient Descent on Wide Two-Layer ReLU Neural Networks

Lénaïc Chizat^{*}, joint work with Francis Bach⁺

March 2nd, 2021 - Workshop on Functional Inference and Machine Intelligence

*CNRS and Université Paris-Saclay +INRIA and ENS Paris

Prediction/classification task

- Couple of random variables (X, Y) on $\mathbb{R}^d imes \mathbb{R}$
- Given *n* i.i.d. samples $(x_i, y_i)_{i=1}^n$, build *h* s.t. $h(X) \approx Y$

Wide 2-layer ReLU neural network For a width $m \gg 1$, predictor h given by

$$h((w_j)_j, x) := rac{1}{m} \sum_{j=1}^m \phi(w_j, x)$$

where $egin{cases} \phi(w, x) := b \, (a^ op [x; 1])_+ \ w := (a, b) \in \mathbb{R}^{d+1} imes \mathbb{R}^{\cdot}. \end{cases}$

Input Hidden layer Output

 $\rightsquigarrow \phi$ is 2-homogeneous in *w*, i.e. $\phi(rw, x) = r^2 \phi(w, x), \forall r > 0$

Gradient flow of the empirical risk

Convex smooth loss
$$\ell$$
:
$$\begin{cases} \ell(p, y) = \log(1 + \exp(-yp)) & (\text{logistic}) \\ \ell(p, y) = (y - p)^2 & (\text{square}) \end{cases}$$

Empirical risk with weight decay ($\lambda \ge 0$)

Gradient flow

- Initialize $w_1(0), \ldots, w_m(0) \stackrel{\text{i.i.d}}{\sim} \mu_0 \in \mathcal{P}_2(\mathbb{R}^{d+1} \times \mathbb{R})$
- Decrease the non-convex objective via gradient flow, for $t \ge 0$,

$$\frac{\mathrm{d}}{\mathrm{d}t}(w_j(t))_j = -m\nabla F_m((w_j(t))_j)$$

 \rightsquigarrow in practice, discretized with variants of gradient descent

Illustration

Space of parameters

- plot $|b_j| \cdot a_j$
- color depends on sign of *b_j*
- tanh radial scale

Space of predictors

- (+/-) training set
- color shows $h((w_j(t))_j, \cdot)$
- line shows 0 level set

Main question

What is performance of the learnt predictor $h((w_j(\infty))_j, \cdot)$?

• Understanding 2-layer neural networks

- \rightsquigarrow natural next theoretical step after linear models
- \rightsquigarrow role of initialization $\mu_{\rm 0},$ loss, regularization, data structure, etc.

• Understanding representation learning via gradient descent

- ↔ not captured by current theories for deeper models who study perturbative regimes around the initialization
- \rightsquigarrow we can't understand the deep if we don't understand the shallow

Infinite width limit: global convergence

Regularized case: function spaces

Unregularized case: implicit regularization

Infinite width limit: global convergence

Dynamics in the infinite width limit

• Parameterize with a probability measure $\mu \in \mathcal{P}_2(\mathbb{R}^{d+2})$

$$h(\mu, x) = \int \phi(w, x) \,\mathrm{d}\mu(w)$$

• Objective on the space of probability measures

$$F(\mu) := \frac{1}{n} \sum_{i=1}^n \ell(h(\mu, x_i), y_i) + \lambda \int \|w\|_2^2 \mathrm{d}\mu(w)$$

Theorem (dynamical infinite width limit, adapted to ReLU) Assume that

$$\operatorname{spt}(\mu_0) \subset \{(a,b) \in \mathbb{R}^{d+1} imes \mathbb{R} \; ; \; \|a\|_2 = |b|\}.$$

As $m \to \infty$, $\mu_{t,m} = \frac{1}{m} \sum_{j=1}^{m} \delta_{w_j(t)}$ converges a.s. in $\mathcal{P}_2(\mathbb{R}^{d+2})$ to μ_t , the unique Wasserstein gradient flow of F starting from μ_0 .

Theorem (C. & Bach, '18, adapted to ReLU)

Assume that $\mu_0 = \mathcal{U}_{\mathbb{S}^d} \otimes \mathcal{U}_{\{-1,1\}}$ and technical conditions. If μ_t converges weakly to μ_{∞} , then μ_{∞} is a global minimizer of F.

- Initialization matters: the key assumption on μ_0 is diversity
- Corollary: $\lim_{m,t\to\infty} F(\mu_{m,t}) = \min F$
- Open question: convergence of μ_t (Łojasiewicz inequality?)

Performance of the learnt predictor?

Depends on the objective F and the data! If F is the ...

- regularized empirical risk: "just" statistics (this talk)
- unregularized empirical risk: need implicit bias (this talk)
- population risk: need convergence speed (open question)

Illustration of global convergence (population risk)

Stochastic gradient descent on expected square loss (m = 100, d = 1)Teacher-student setting: $X \sim U_{\mathbb{S}^d}$ and $Y = f^*(X)$ where f^* is a ReLU neural network with 5 units (dashed lines).

[Related work studying infinite width limits]:

Nitanda, Suzuki (2017). Stochastic particle gradient descent for infinite ensembles.

Mei, Montanari, Nguyen (2018). A Mean Field View of the Landscape of Two-Layers Neural Networks.

Rotskoff, Vanden-Eijndem (2018). Parameters as Interacting Particles [...].

Sirignano, Spiliopoulos (2018). Mean Field Analysis of Neural Networks.

Wojtowytsch (2020). On the Convergence of Gradient Descent Training for Two-layer ReLU-networks [...]

Regularized case: function spaces

Definition (Variation norm)

For a predictor $h: \mathbb{R}^d \to \mathbb{R}$, its variation norm is

$$\begin{split} \|h\|_{\mathcal{F}_{1}} &:= \min_{\mu \in \mathcal{P}_{2}(\mathbb{R}^{d+2})} \left\{ \frac{1}{2} \int \|w\|_{2}^{2} d\mu(w) \; ; \; h(x) = \int \phi(w, x) d\mu(w) \right\} \\ &= \min_{\nu \in \mathcal{M}(\mathbb{S}^{d})} \left\{ \|\nu\|_{TV} \; ; \; h(x) = \int (a^{\top}[x; 1])_{+} d\nu(a) \right\} \end{split}$$

Proposition

If $\mu^* \in \mathcal{P}_2(\mathbb{R}^{d+2})$ minimizes F then $h(\mu^*, \cdot)$ minimizes

$$\frac{1}{n}\sum_{i=1}^n \ell(h(x_i), y_i) + 2\lambda \|h\|_{\mathcal{F}_1}.$$

Barron (1993). Universal approximation bounds for superpositions of a sigmoidal function. Kurkova, Sanguineti (2001). Bounds on rates of variable-basis and neural-network approximation. Neyshabur, Tomioka, Srebro (2015). Norm-Based Capacity Control in Neural Networks. What if we only train the output layer?

 \rightsquigarrow Let $\mathcal{S} := \{ \mu \in \mathcal{P}_2(\mathbb{R}^{d+2}) \text{ with marginal } \mathcal{U}_{\mathbb{S}^d} \text{ on input weights} \}$

Definition (Conjugate RKHS)

For a predictor $h : \mathbb{R}^d \to \mathbb{R}$, its conjugate RKHS norm is

$$\|h\|_{\mathcal{F}_2}^2 := \min\left\{\int |b|_2^2 \mathrm{d}\mu(a,b) \ ; \ h = \int \phi(w,\cdot) \,\mathrm{d}\mu(w), \ \mu \in \mathcal{S}
ight\}$$

Proposition (Kernel ridge regression)

All else unchanged, fixing the hidden layer leads to minimizing

$$\frac{1}{n}\sum_{i=1}^{n}\ell(h(x_{i}), y_{i}) + \lambda \|h\|_{\mathcal{F}_{2}}^{2}$$

Illustration of the predictor

Predictor learnt via gradient descent (square loss & weight decay)

(a) Training both layers (\mathcal{F}_1 -norm) (b) Training output layer (\mathcal{F}_2 -norm)

	\mathcal{F}_1	\mathcal{F}_2
Stat. prior	Adaptivity to anisotropy	lsotropic smoothness
Optim.	No guarantee	Guaranteed efficiency

Bach (2014). Breaking the curse of dimensionality with convex neural networks.

Unregularized case: implicit regularization

Preliminary: linear classification with exponential loss

Classification task

- $Y \in \{-1, 1\}$ and prediction is sign(h(X))
- no regularization ($\lambda = 0$)
- loss with an exponential tail
 - exponential $\ell(p, y) = \exp(-py)$, or
 - logistic $\ell(p, y) = \log(1 + \exp(-py))$

Theorem (SHNGS 2018, reformulated)

Consider $h(w, x) = w^{\intercal}x$ and a linearly separable training set. For any w(0), the normalized gradient flow $\bar{w}(t) = w(t)/||w(t)||_2$ converges to a $||\cdot||_2$ -max-margin classifier, i.e. a solution to

 $\max_{\|w\|_2 \leq 1} \min_{i \in [n]} y_i \cdot w^{\mathsf{T}} x_i.$

Telgarsky (2013). Margins, shrinkage, and boosting.

Soudry, Hoffer, Nacson, Gunasekar, Srebro (2018). The Implicit Bias of Gradient Descent on Separable Data.

Implicit regularization for linear classification: illustration

Implicit bias of gradient descent for classification (d = 2)

Back to wide 2-layer ReLU neural networks.

Theorem (C. & Bach, 2020) Assume that $\mu_0 = U_{\mathbb{S}^d} \otimes U_{\{-1,1\}}$, that the training set is consistant $([x_i = x_j] \Rightarrow [y_i = y_j])$ and technical conditions (in particular, of convergence). Then $h(\mu_t, \cdot)/||h(\mu_t, \cdot)||_{\mathcal{F}_1}$ converges to the \mathcal{F}_1 -max-margin classifier, i.e. it solves

 $\max_{\|h\|_{\mathcal{F}_1}\leq 1} \min_{i\in[n]} y_i h(x_i).$

- fixing the hidden layer leads to the \mathcal{F}_2 -max-margin classifier
- well also prove convergence speed bounds in simpler settings

Chizat, Bach (2020). Implicit Bias of Gradient Descent for Wide Two-layer Neural Networks [...].

Illustration

 $h(\mu_t, \cdot)$ for the exponential loss, $\lambda = 0$ (d = 2)

Numerical experiments

Setting

Two-class classification in dimension d = 15:

- two first coordinates as shown on the right
- all other coordinates uniformly at random

Coordinates 1 & 2

(a) Test error vs. n

(b) Margin vs. m (n = 256)

Statistical efficiency

Assume that $||X||_2 \le D$ a.s. and that, for some $r \le d$, it holds a.s. $\Delta(r) \le \sup_{\pi} \left\{ \inf_{y_i \ne y_{i'}} ||\pi(x_i) - \pi(x_{i'})||_2 ; \pi \text{ is a rank } r \text{ projection} \right\}.$

Theorem (C. & Bach, 2020)

The \mathcal{F}_1 -max-margin classifier h^* admits the risk bound, with probability $1 - \delta$ (over the random training set),

$$\underbrace{\mathbf{P}(Y \ h^*(X) < 0)}_{\text{proportion of mistakes}} \lesssim \frac{1}{\sqrt{n}} \Big[\Big(\frac{D}{\Delta(\mathbf{r})} \Big)^{\frac{\mathbf{r}}{2}+2} + \sqrt{\log(1/\delta)} \Big].$$

- this is a strong dimension independent non-asymptotic bound
- for learning in \mathcal{F}_2 the bound with r = d is true
- this task is asymptotically easy (the rate $n^{-1/2}$ is suboptimal)

[Refs]:

Chizat, Bach (2020). Implicit Bias of Gradient Descent for Wide Two-layer Neural Networks [...].

Lazy training (informal)

All other things equal, if the variance at initialization is large and the step-size is small then the model behaves like its first order expansion over a significant time.

- Neurons hardly move but significant total change in $h(\mu_t, \cdot)$
- Here, the linearization converges to a max-margin classifier in the tangent RKHS (similar to F₂)
- Eventually converges to $\mathcal{F}_1\text{-max-margin}$

Jacot, Gabriel, Hongler (2018). Neural Tangent Kernel: Convergence and Generalization in Neural Networks. Chizat, Oyallon, Bach (2018). On Lazy Training in Differentiable Programming. Woodworth et al. (2019). Kernel and deep regimes in overparametrized models.

Two implicit regularizations in one dynamics (II)

See also: Moroshko, Gunasekar, Woodworth, Lee, Srebro, Soudry (2020). Implicit Bias in Deep Linear Classification: Initialization Scale vs Training Accuracy.

- Open question: make statements of this talk quantitative ~ how fast is the convergence ? how many neurons are needed?
- Mathematical models for deeper networks
 - $\rightsquigarrow\,$ goal: formalize training dynamics & study generalization

[Talk based on the following papers:]

- Chizat, Bach (NeurIPS 2018). On the Global Convergence of Over-parameterized Models using Optimal Transport.
- Chizat, Oyallon, Bach (NeurIPS 2019). On Lazy Training in Differentiable Programming.
- Chizat, Bach (COLT 2020). Implicit Bias of Gradient Descent for Wide Two-layer Neural Networks Trained with the Logistic Loss.